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In this paper, we consider a problem named Network Design Problems with two-edges
matching failures (NDP2EM). In a graph, any two non-incident edges is a two-edges matching.
We ask for a minimum cost subgraph that contains at least one path between any pair of termi-
nal nodes after deleting any two-edges matchings from the graph. We develop a formulation of
the NDP2EM and show that how one can effectively compute the lower bound for the problem.

Introduction

Connected network design problems come up naturally when we analyze the connectivity
requirements for a network, which has to be built to be able to flow not only prescribed traffic
requirements in normal operation, but also the same amount of traffic when failures occur on
some components (edges or vertices). Another reason for the growth of interest in this area is
the variety of contexts of designing transportation networks, telecommunication networks and
teleprocessing networks.

In papers [1]-[4], the authors studied on telecommunication network design and they have
focused on 𝑘-connectivity (𝑘 ≥ 2) of the constrained network problem, in which one wants to
design a network with the minimum prescribed number of disjoint paths between any pair of
nodes. The polyhedra associated with these problems have been studied in [3]-[6].

The network design problems with two-edges matching failures (NDP2EM) consists of
finding a minimum cost subgraph 𝐺* which contains at least one path between every pair of
terminal nodes of 𝑁 after deleting any non-incident two edges from the graph 𝐺*.

Model of the NDP2EM

In order to formulate the NDP2EM on an undirected network 𝐺 with given terminal nodes
in 𝑁 , we fix any node 𝑠 in 𝑁 as the source and add a new node 𝑟 to the network 𝐺 as the sink.
Then all terminal nodes 𝑡 in 𝑁0 = 𝑁 ∖ 𝑠 are connected by the arcs (𝑡, 𝑟) with unit capacities,
i.e., the edge 𝑡, 𝑟 is directed from the node 𝑡 to node 𝑟. Then all edges 𝑠, 𝑣 ∈ 𝐸 are directed
from 𝑠 to 𝑣 with capacity 𝑏, where 𝑣 ∈ 𝑉 and 𝑏 = |𝑁0|. Lastly, each edges 𝑣, 𝑤 ∈ 𝐸 where
𝑣 ̸= 𝑠, 𝑟 is replaced by two arcs with opposite directions. All these arcs have capacity 𝑏. Let
Π be the set all two-edges matchings in 𝐺. To illustrate the formulation of the problem let us
consider the NDP2EM on a complete graph with four nodes (Figure 1.(a)), where nodes 1,2
and 3 are terminal nodes.

(a) (b)

Figure 1. (a) original network (b) modified network

Let us fix node 1 as the source (𝑠 = 1) and nodes 2 and 3 are connected with sink node 𝑟.
The resulting network is presented in Figure 1.(b).

In the term of above notations the flow model of NDP2EM can be formulated as the
following integer linear program:

min
∑︁
𝑒∈𝐸

𝑐𝑒𝑥𝑒 (1)
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subject to

∑︁
𝑗∈𝛿−𝑀 (𝑖)

𝑥𝑗𝑖(𝑀) −
∑︁

𝑗∈𝛿+𝑀 (𝑖)

𝑥𝑖𝑗(𝑀) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑏 if , 𝑖 = 𝑠,

0 if , 𝑖 ∈ 𝑉 ∖ {𝑠},𝑀 ∈ Π

𝑏 if , 𝑖 = 𝑟,

(2)

0 ≤ 𝑥𝑖𝑗(𝑀) + 𝑥𝑗𝑖(𝑀) ≤ 𝑏𝑥𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸, (𝑖, 𝑗) /∈ 𝑀 ∈ Π, (3)

0 ≤ 𝑥𝑡𝑟(𝑀) ≤ 1, 𝑡 ∈ 𝑁0,𝑀 ∈ Π, (4)

0 ≤ 𝑥𝑖𝑗 ≤ 1, (𝑖, 𝑗) = 𝑒 ∈ 𝐸, (5)

𝑥𝑖𝑗 = 0 ∨ 1, (𝑖, 𝑗) = 𝑒 ∈ 𝐸, (6)

where 𝛿+𝑀(𝑖) is the set of arcs directed out of node 𝑖 and 𝛿−𝑀(𝑖) is the set of arcs directed into
node 𝑖 in the network 𝐺𝑟 = (𝑉 ∪ {𝑟}, 𝐸 ∪ {(𝑡, 𝑟), 𝑡 ∈ 𝑁 ∖ {𝑠}}), after deleting a two-edges
matching 𝑀 from the network 𝐺.

Note that if the graph 𝐺 has not any two-edges matching then the problem is the Steiner
problem on the graph 𝐺. Here, it follows that the set 𝑁 is a node set of any connected
subgraph of 𝐺 then the NDP2EM has a solution and the conversely is true, too. By this
property NDP2EM differs from the network design problem that are considered in the above
cited papers.

To compute the lower bound for the optimal objective function we consider the dual prob-
lem of (1)-(5)(without the constraints (6)). The dual problem can be formulated as follows:

max 𝑏
∑︁
𝑀∈Π

(𝑢𝑟(𝑀) − 𝑢𝑠(𝑀)) −
∑︁
𝑡∈𝑁0

∑︁
𝑀∈Π

𝑦𝑡𝑟(𝑀) − 𝑏
∑︁

(𝑖,𝑗)∈𝐸

𝑧𝑧𝑖𝑗 (7)

subject to
𝑢𝑗(𝑀) − 𝑢𝑖(𝑀) ≤ 𝑤𝑖𝑗(𝑀), (𝑖, 𝑗) ∈ 𝐸, (𝑖, 𝑗) /∈ 𝑀 ∈ Π, (8)∑︁
𝑀∈Π

𝑤𝑖𝑗(𝑀) ≤ 𝑐𝑐𝑖𝑗 + 𝑧𝑧𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸, (𝑖, 𝑗) /∈ 𝑀 ∈ Π, (9)

𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) ≤ 𝑦𝑡𝑟(𝑀), 𝑡 ∈ 𝑁0,𝑀 ∈ Π, (10)

𝑦𝑡𝑟(𝑀) ≥ 0, 𝑤𝑖𝑗(𝑀) ≥ 0, 𝑧𝑖𝑗 ≥ 0, (11)

where 𝑐𝑐𝑖𝑗 = 𝑐𝑖𝑗/𝑏, 𝑧𝑧𝑖𝑗 = 𝑧𝑖𝑗/𝑏. In the dual model, 𝑧𝑖𝑗 are dual variables for the constraints (5).

Proposition 1 There exists an optimal solution of (7)-(11) for which 𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) =
𝑦𝑡𝑟(𝑀), for all 𝑡 ∈ 𝑁0 and 𝑀 ∈ Π.

Proof. We suppose that 𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) < 𝑦𝑡𝑟(𝑀) for some 𝑡 in 𝑁0. Let 𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) ≥ 0
then we can set 𝑦𝑡𝑟(𝑀) = 𝑢𝑟(𝑀)−𝑢𝑡(𝑀). If 𝑢𝑟(𝑀)−𝑢𝑡(𝑀) < 0 then we can set 𝑢𝑟(𝑀) = 𝑢𝑡(𝑀)
and 𝑦𝑡𝑟(𝑀) = 0 to increase the optimal value of the objective function (7).

Another proof of this proposition follows from the complementary slackness optimality
condition such that

(𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) − 𝑦𝑡𝑟(𝑀))𝑥𝑡𝑟(𝑀) = 0.

Since the capacity of the cut which separate the node 𝑟 from the other nodes is equal to 𝑏, then
it follows that 𝑥𝑡𝑟(𝑀) = 1 in any feasible solution, for all nodes 𝑡 ∈ 𝑁0. Therefore, we have
𝑢𝑟(𝑀) − 𝑢𝑡(𝑀) = 𝑦𝑡𝑟(𝑀) for all nodes 𝑡 ∈ 𝑁0 .
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By the proposition we can write 𝑢𝑟(𝑀) = 𝑢𝑡(𝑀) + 𝑦𝑡𝑟(𝑀) for all 𝑡 ∈ 𝑁0 and 𝑀 ∈ Π.
Taking into account that 𝑏 = |𝑁0|, the objective function (7) can be rewritten as follows:

max
∑︁
𝑀∈Π

(
∑︁
𝑡∈𝑁0

𝑢𝑡(𝑀) − 𝑏𝑢𝑠(𝑀)) −
∑︁

(𝑖,𝑗)∈𝐸

𝑧𝑖𝑗 (12)

and the constraints (10) can be eliminated from the model.

Theorem 1 In an optimal solution of the dual problem, if 𝑢𝑗(𝑀)−𝑢𝑖(𝑀) ̸= 0 and 𝑤𝑖𝑗(𝑀) > 0
for matchings 𝑀 = 𝑀1,𝑀2 ∈ Π so that (𝑖, 𝑗) /∈ 𝑀1,𝑀2, then there exits an optimal solution
such that

𝑢𝑗(𝑀1) − 𝑢𝑖(𝑀1) = 𝑢𝑗(𝑀1) − 𝑢𝑖(𝑀1) + 𝑢𝑗(𝑀2) − 𝑢𝑖(𝑀2), (13)

𝑢𝑗(𝑀2) − 𝑢𝑖(𝑀2) = 0 (14)

and
𝑤𝑖𝑗(𝑀1) = 𝑤𝑖𝑗(𝑀1) + 𝑤𝑖𝑗(𝑀2), (15)

𝑤𝑖𝑗(𝑀2) = 0, (16)

for each edge (𝑖, 𝑗) ∈ 𝐸.

Proof. Let 𝑤𝑖𝑗(𝑀) > 0 for matchings 𝑀 = 𝑀1,𝑀2 ∈ Π such that (𝑖, 𝑗) /∈ 𝑀1,𝑀2 and some
edge (𝑖, 𝑗) ∈ 𝐸. Let we define values of 𝑤𝑖𝑗(𝑀) and 𝑢𝑗(𝑀), 𝑢𝑖(𝑀) for 𝑀 = 𝑀1,𝑀2. It is
clear that the constraints (8) and (9) hold for the edge (𝑖, 𝑗) after redefining values of 𝑤𝑖𝑗(𝑀)
and 𝑢𝑗(𝑀), 𝑢𝑖(𝑀). By continuing this process for the edge (𝑖, 𝑗), we obtain 𝑤𝑖𝑗(𝑀1) > 0 and
𝑤𝑖𝑗(𝑀) = 0 for 𝑀 ̸= 𝑀1. By the above redefinition, we can set 𝑢*

𝑘(𝑀1) =
∑︀

𝑀 ∈ Π𝑢𝑘(𝑀) −
𝑢𝑘(𝑀1) for 𝑘 = 𝑗, 𝑖. Since∑︁

𝑀∈Π

(
∑︁
𝑡∈𝑁0

𝑢𝑡(𝑀) − 𝑏𝑢𝑠(𝑀)) =
∑︁
𝑡∈𝑁0

∑︁
𝑀∈Π

(𝑢𝑡(𝑀) − 𝑢𝑠(𝑀)) =
∑︁
𝑡∈𝑁0

(𝑢*
𝑡 − 𝑢*

𝑠),

where 𝑢*
𝑡 = 𝑢*

𝑡 (𝑀𝑡) and 𝑢*
𝑠 = 𝑢*

𝑠(𝑀𝑠) for 𝑀𝑡 and 𝑀𝑠 in Π.

Conclusion

To find an optimal solution of the dual problem we use standard methods of the linear
programming by using CPLEX solver and it will be a lower bound for the initial problem. Then
this lower bound can be using in solving 0 and 1 initial problem by standard methods type of
branch and bound.
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