
A task-oriented environment for teaching and learning
algorithms — uml project and its implementation

S. Nenkov, H. Iliev

Algorithms are frequently taught procedural knowledge units in computer and humanitary edu-
cation. Both design and implementation issues of a Task Oriented Environment for Constructing
Algorithms are discussed in the paper. Its project mainly from the teacher’s point of view is pre-
sented by means of use case, activity, and sequence diagrams. A subject-independent architecture
is proposed consisting of standard and specialized tools, task base and students’ models integrated
in a data base. Implementation of the teacher’s tool prototype in DELPHI 7.0 programming envi-
ronment is described and illustrated by means of screenshots.

Introduction

The algorithm theory and practice is an old and important branch in the computer and
humanitary sciences. Algorithms (computational or for decision making support) are referred
to as abstract procedural knowledge units, describing the step-by-step solving a given class of
problems. An effective and efficient computational algorithm leads to a reliable and effective pro-
gram implementation [1],[3]. Description of an algorithm knowledge unit presents in an encoded,
compressed, and understandable form the semantics of the corresponding data processing. Its
implementation in the computer memory by means of frames, semantic networks, rules, and even
their combinations is called algorithm knowledge representation.

Like other abstract procedural units such as structural schemes, Petri nets, state machines,
and so on, the algorithms have their own statics and dynamics, taught in different styles: textual
(natural description, pseudo-code, and so on), graphical (flowcharts, activity diagrams, and so
on), tables for decision making, and even in a mixed style. First the static, e.g. the structure of
the flowcharts has to be taught as more simple then its dynamics, e.g. interpretation. Empirical
studies with different systems for algorithm visualization and animation [2] have confirmed that
they enhance the angorithm skills acquisition due to learner’s activity, friendly interface, interac-
tive solving, color coding, intelligent support, and so on. The main requirements for intelligent
teaching in the area of algorithms are formulated by Robling & Naps [4]. They are developers of
DAPHNIS cited as the first intelligent language-independent system with a declarative method
for visualization with algorithm animation, based on the data stream tracing.

For several years Zheliazkova’s research group at the Rousse University has been working on
development, implementation, and studying an intelligent and adaptive Task-Oriented Environ-
ment for Teaching and Learning Algorithms [6]. The individual user categories are: administrator,
task author, instructor, learning and examined student.

The present paper focuses on the project and implementation of a Task-Oriented Environ-
ment for Teaching and learning Algorithms (TOETLA). It is organized as follows. The project
is presented in the next section by three types of UML diagrams (use case, activity, and se-
quence). The third section deals with the TOETLA architecture, which is platform-, algorithm-
and language-independent. The implementation in the DELPHI programming environment and
user interface with several screenshots are presented in the next section. The conclusion outlines
the paper contributions and the authors’ intentions for the near future.

UML project of the environment

The multi-user use case diagram of the TOETLA is given on fig. 1. It shows the functional
requirements of the different user categories with the following priority, e. g. system administrator,
task author, instructor, learning and examined students. After login with user name and password,
the environment gives the user rights to operate the environment specific for the corresponding

53



category. The task author is allowed to create, change, delete, and assess a task for flowchart
constructing. A task description includes: informal formulation, key directives for the instructor’s
intervention, author’s performance as an expert, and the computed values of the task pedagogical
parameters. The instructor is responsible for planning, organization, and monitoring a test-like
exercise of a subgroup of students. Under the instructor’s pedagogical knowledge the learning
student can see the author’s task and relevant lecture material in the form of a context-dependent
help. The examined student can see only the task formulation and parameters to perform flowchart
constructing tasks for a fixed time.

Figure 1. Use Case diagram of the TOETLA.

Figure 2. Activity diagram of the task author.

The task author’s activity diagram is shown on fig. 2. He/she can use local for the task
key directives to allow/permit the learning/examined student, for example, to print the author’s
performance, save the student’s performance, see the author’s algorithm description, and so on.
Other recommendations concerns the planned time for the task performance, kind of the task
assessment, assessment scale, and so on. The instructor is accessed to a homogeneous task base

54



(TB) in order to preview it and select appropriate tasks for each student/exercise. He/she can
choose the number of its tasks, add/remove/delete an exercise task and change its parameters.
The student’s activity diagram for the learning mode is shown on fig. 3. The learning student
is free to choose any task for flowchart construction from the exercise planned by the instructor.
He/she is authorized only to open a couple of bmp and .alg file, e.g. has no rights for their edition.
An .alg file presents a text file in a specialized script language for practical skills description [6].
The set of values of the input variables prepared by the author have to be chosen for passing
all paths during the flowchart interpretation. The TOETLA offers two modes of interpretation
respectively tracing to see step by step the way in which input values are transformed to their
final values. The learning student also is allowed in a way similar to the author to construct
his/her own task solution, to see its automatically computed parameters and time planned for
the task solution. Before interpretation he/she enters input variables’ values he/she wishes during
construction the flowchart structural correctness is checked.

Figure 3. The student’s actions in the trainee
mode.

Figure 4. The student’s actions in the examinee
mode.

The instructor plans the exercise in accordance with the exercise goal, author’s recommenda-
tions, and his/her own preferences. In order to facilitate and accelerate preparing a set of different
and equivalent tasks for different students in a subgroup the instructor has to prepare .ecs file with
syntax given in the following paper changing its automatically computed parameters as well as
the A’s key directives. After the instructor finishes the exercise preparing the exercise parameters
tougher with the intervals for the assessment scale are automatically computed on the base of the
tasks parameters.

The sequence diagrams on fig. 5 corresponds the situation when the author and instructor
are teamworking to create and change an exercise. It also corresponds to the teamwork but in
a long time process depicted as a vertical rectangle. On the top of the figure the environment’s
units for the process implementation are shown. The solid arrows are used for the users (author
and instructor), and the dash ones for the environment units’ reactions.

The architecture of the TOETLA

This architecture (fig. 6) slightly differs from architectures of other Task-Oriented Environ-
ments,

55



Figure 5. Author’s sequence diagram. Figure 6. The architecture of the TOETLA.

Fig. 5. Author’s sequence diagram Fig. 6. The architecture of the TOETLA developed by
Zheliazkova’s research group. The architecture consists of standard editors and specialized tools
supporting a common TB integrated in the environment’s data base. The standard editors are
four: a word processor (e.g. MS WORD), a text editor (e.g. Notepad), a graphics editor (e.g.
Paint), and a help editor (e. g. MS HTML Help Workshop). The lecture material in the Word
document is preliminary prepared by the course lecturer and converted to an .hlp file with a
context-dependent help. The demonstrated schemes, diagrams, and so on in the form of images
(.bmp, jpg, gif, and so on) are prepared by means of the graphics editor and then imported into
the document.

The specialized tools are three, called respectively program-generator, interpreter-evaluator,
and task manager. The author, instructor, and student operate these tools though a highly inter-
active and intuitive user interface. By means of the first tool the author’s and students’ structural
knowledge is extracted and the couple of files are generated. An .alg file in the AlgolScript lan-
guage is seen as physically separated subprogram describing the author’s structural knowledge
for a given flowchart. Additionally, the tool extracts the instructor to his/her pedagogical knowl-
edge for a given exercise and stored in a standard .ecs file in the ExerciseScript language. Both
files can be open and edited by means of the standard text editor to avoid the slow process of
editing-generating if needed equivalent tasks for different students.

The interpreter-evaluator parses the .alg script to compute automatically the task parameters
(knowledge volume, degree of difficulty, planned time, and so on) and stored in the TB. The tool
also provides diagnostics of the student’s knowledge refreshing his/her short-term relational model,
also integrated in the DB. After a constructing task is performed by the student, the tool analyses
his/her results relatively to the author’s ones.

Besides the task sorting and presentation of their formulations, task manager interprets the
underlying in the .ecs file local teaching strategy, e.g. the short-term plan for performing the
exercise. More precisely the tool interprets the key directives, fulfills the missing and corrects the
wrong knowledge, as well as refresh the student’s model. After a session finishes the parameters
of the exercise (knowledge volume, time undertaken, rate of learning, and degree of difficulty) are
accumulated in the TB as statistical parameters.

Implementation the WINDOWS-based Prototype

For implementation of the WINDOWS-based environment DELPHI programming environ-
ment had been preferred over other ones such as VISUAL BASIC and VISUAL 𝐶 + +. Zhe-
liazkova’s group experience in implementation of windows-based task-oriented environments has
shown that Delphi programming allows creating such kinds of applications easy and faster from
one or two programmers. Several reasons can be pointed out for this choice, namely: its visual

56



Figure 7. The window for the administrator.

Figure 8. The window for user login.

Figure 9. The window for the administrator. Figure 10. The window for user login.

component library (VCL) is rich and power, visual programming is easy and intuitive, different
databases are supported and so on. The screenshots presenting on fig. 7-12 confirm this state-
ment without any comments. It is supposed that the student is login trough the user name and
password given by the system administrator. The selection of the user category also is obligatory
from a popup menu. The environment itself is loading pressing the button Login.

Bellow the interaction of the examined student with the main form (fig. 12) is commented.
The main window of the application contains menu with commands, toolbars, client area, as
well as a panel with the cursor current coordinates. The type of the task, e.g. for construction
(Construct), interpretation (Interprete), and testing (Test) is chosen from the menu-element Tasks.
In the first case when a new or existing task for constructing with the command File/Open a
corresponding couple of files (.alg and .bmp) is open. The first one contains the subprogram
script, and the second one — the flowchart image. With menu command File/New a new couple
is created. In both cases a dialog form shown on fig. 9 apeared. It contains: memo field for the
task formulation in a free text format, edit field for the file name, knowledge volume (Volume),
planned/expected time (Duration), as well as a check-box for show/hide an additional window with
the script. Three buttons of the form serve for: Cancel, Back and OK confirms the contents and
move to the next form (fig. 9). Though the groups of radio-buttons the choice of one of all possible
combinations of key directives it allows the author/instructor to program the virtual intervention
when the student performs the current task. The scheme (DO—REDO); her redaction (EDIT
—NOEDIT); suspending of her creation and construction (ESCAPE—NOESCAPE); printing
the pair files (PRINT—NOPRINT); saving the files to directory or device (SAVE—NOSAVE);
assessment of the proximity degree between two block schemes (ASSESS—NOASSESS). This form
has the same buttons for — copying (Copy), deleting (Cut), and pasting (Paste) of the clipboard
contents at a screen position pointed out by the cursor. The construction of the block scheme
starts after returning to the main form. (fig. 3). Each command of the Tools menu item serves
for drawing a given graphical primitives: RoundRect, Rect, Romb, Para, Line, Arrow and Text.
For acceleration of the access in the toolbars a corresponding button is added. The command
View/Toolbars hides/shows the toolbars. The drag and drop techniques also supports the user
needs. Each command from the Edit menu item has a sense of copying

57



Figure 11. The key directives.

Figure 12. Euclid’s algorithm flowchart.

If the T want to see/hide the generated script, he/she can do this choosing the command
View/Script. The subprogram is syntactically and semantically correct, so it’s editing with a
standard text editor like Notepad is recommended only when the corrections are unsubstantial.
For example, when different versions of one and the same flowchart he/she needs. The choice
one of the commands File/Save and File/Save As stores the subprogram and the flowchart under
one and the same name with different extensions. With command Task/Interprete the sets of
the input variables are entered for algorithm interpretation. They also are added to the end of
the subprogram. Before to point out the sequence of the tasks for a given exercise for a given
student, the instructor has to choose the command Tasks/Test. As a result the dialog form (not
shown here) with the edit fields: for user name, password, subject, and topic. The next form (not
shown here) ensures adding, confirming, canceling, and deleting an exercise task. If necessary
the T can change the criteria for assessment, e.g. the type of the scale, SUCCESS/FAILURE,
PERCENTAGE, PROXIMITY or MARK number of the maximal points its duration, as well as
the constant for time correction. In such way the environment adapt to the needs and preferences
of the instructor.

The command Task/Interprete stars the flowchart interpretation with the given by the author
set of the input variables values. The animation style leads to a deeper awareness of the data stream
under the influence of the separated operators and to effective execution of a given operation block.
The flexible control of the interpretation is done with the commands Automatically, Manually,
Step Over, Program Reset from the menu item Run.

The student can choose between two alternatives for control: automatically (command Au-
tomatically) and manually (command Manually) and pressing the functional key F9). The final
result of the algorithm interpretation is appeared in an additional window (fig. 8). The transition
from one block to another is done repeating the command Run/Step Over or pressing the key F8.
With command Run/Program Reset or the key combination Ctrl+F9 the tracing is stopped. After
the exercise performance or the planned time for the exercise is over the environment generates
a final report. There is a possibility for the student to execute the algorithm with his/her own
input data.

Conclusions and intentions

Besides algorithm-independent and intelligent the reported environment is adaptive to both
author and instructor, supporting their teamwork. Its homogeneous task base can be easy ex-
tended, allows the algorithmic knowledge units reusing, that increases both author and instructor’s
productivity. Structural knowledge diagnostics and assessing without checking the text syntax al-
lows teaching and learning not only computational but also decision making algorithms. The more
simple interpretation of the decision making algorithms that is reduced to enter yes/no answer
from the keyboard will be implemented in the near future.

The intention is also to integrate the TOETLA into a large-scale Environment for Individual-
ized Planned Teaching different courses which web-based technology is compatibile with the word

58



documents and excel tables. The common well developed module for administration and commu-
nication is available for all participants in the course teaching including the author of the lecture
material. In such a way the compatibility with the windows-based technology will be reached,
and a possibility for planning and performance of heterogeneous exercises will be ensured.

References

[1] B. Crescencio, M.J. Marcelino, A. Gomes, M. Esteves, A.J. Mendes, (2005), Integrating
Educational Tools for Collaborative Computer Programming Learning, Journal of Universal
Computer Science, Vol. 11, No. 9, pp. 1505-1517.

[2] Korhonen A., Malmi L., Silvasti P. (2003). TRAKLA2: a Framework for Automatically
Assessed Visual Algorithm Simulation Exercises. Proceedings of the 3rd Finnish/Baltic Sea
Conference on Computer Science Education, Koli, Finland, pp. 48-56.

[3] Maers B.A., Taxonomies of Visual Programming and Program Visualization, Journal of Visual
Languages and Computing, Vol. 1, 1990, pp. 97-123.

[4] Robing G., Naps T.L., A test Bed for Pedagogical Requirements in Algotithm Visualization,
Proceedings of the 7th Annual SIGGSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education (ITiCS’02), Arhus, Denmark, June, 2002.

[5] Viere F., Van De, La Simulation et l’Animation Modulaire d’Algorithmes en Langage Object.
Rowdrawadoktoska. Universitte des Sciences et Technologies, Lille, Francja, 1997.

[6] Zheliazkova I., Atanasova G., Computer-Aided Teaching and Learning Algorithms, Proceed-
ings of the 15th Annual Conference on Innovation in Education for Electrical and Information
Engineering, Sofia, 2004, pp. 49-58.

Authors

Stoyan Nenkov — Student, Faculty of Electrical Engineering Electronics and Automation,
Rousse University ”Angel Kunchev”, Rousse, Bulgaria; E-mail: s093211@stud.uni-ruse.bg

Hristo Iliev — bachelor degree student, Faculty of Electrical Engineering Electronics and
Automation, Rousse University ”Angel Kunchev”, Rousse, Bulgaria; E-mail: author1@author.com

59


