
“Mathematical model of cloud computing data center
based on OpenFlow”

P.N. Polezhaev, A.E. Shukhman, U.A. Ushakov

This paper describes adequate mathematical model of cloud computing data center based on
OpenFlow. The model represents cloud computing data center as weighted undirected graph. Its
vertices are network devices including computing nodes, OpenFlow switches, data storages and
OpenFlow controller. Edges represent network links between them. Proposed model can be used to
implement efficient traffic routing schemes which localizes data flows between virtual machines in
the groups, decreases network contention and increases overall cloud efficiency.

Introduction

Cloud computing systems have become the de facto standard in many areas of advanced
information technologies. Companies use clouds to deploy their scientific and business applications.
They avoid the costs of creating and maintaining their own data centers. On the other hand, the
owners of cloud computing data center by consolidating computing resources and storage systems
are able to reduce the total cost of IT infrastructure ownership by serving a larger number of
customers. Usage of effective technical tools for scheduling and load balancing, packet routing
control and integration of several territorial disparate data center segments are another ways to
reduce costs for computing cloud data center owners.

Existing network protocols of cloud computing data center are Fiber Channel, Infiniband and
traditional Ethernet. They have limited traffic management and QoS. An improved versions of
the Ethernet protocol - Converged Enhanced Ethernet and Cisco Data Center Ethernet include
extensions for flow control based on priorities, bandwidth sharing, overloads and logical state
band data control, lossless data transferring and simultaneous use of several parallel data paths
between nodes. The main drawbacks of these solutions are complex decentralized flow control
scheme based on a set of proprietary protocols, considerable costs of network equipment and the
complexity of its modification. It should be noted that these solutions use reactive flow control
scheme, which makes decisions on switching during the transmission of packets.

Software defined networks (SDN) are extremely attractive technologies which can be used
in cloud computing data centers. SDN principles first emerged in the research laboratories at
Stanford and Berkeley [1]. Now SDN are being developed by a consortium of Open Network
Foundation and the European project OFELIA [2]. Known positive experience of Google and
Amazon to implement SDN in cloud data centers.

The approach of SDN is the ability to dynamically control the data transmision over the
network by using OpenFlow protocol. All active network devices work together under the network
operating system, which provides applications with access to network management. Network
operating systems can be centralized and use common abstraction for packet forwarding.

By controlling the packet forwarding, software defined networks of the cloud data centers can
be used to implement simultaneous multipath data transfer schemes, priority based flow control,
network virtualization, QoS mechanism or effectively distribute the load on the network. Open-
Flow open standards and the shift of control logic to a separate controller simplifies the hardware
and software of active network equipment. Centralization, standardization and transparency of
SDN allows to use it to build flexible and efficient data centers which can adapt their infrastructure
to the emerging needs of the business.

Currently, there are no solutions based on SDN for cloud computing data centers which can
topologically localize data flows between virtual machines in the groups, reduce network contention
and increase the overall data center efficiency. This is the novelty of the present work.

Implementation of such approach needs adequate mathematical model of cloud computing

71



data center based on OpenFlow.

Proposed mathematical model of cloud computing data center based on OpenFlow

Cloud computing data center can be represented as an weighted undirected graph of the form:

𝐶𝑙𝑜𝑢𝑑 = (𝐷𝑒𝑣𝑖𝑐𝑒𝑠, 𝐿𝑖𝑛𝑘𝑠, 𝑡𝑦𝑝𝑒, 𝑤𝑛., 𝑤𝑠𝑤., 𝑤𝑠𝑡., 𝑤𝑙.), (1)

where set of vertecies 𝐷𝑒𝑣𝑖𝑐𝑒𝑠 = 𝑁𝑜𝑑𝑒𝑠 ∪ 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠 ∪ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠 ∪ {𝐶𝑜𝑛𝑡0} denotes network
devices including computing nodes 𝑁𝑜𝑑𝑒𝑠 = {𝑁1, 𝑁2, ..., 𝑁𝑛}, OpenFlow switches 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠 =
{𝑆1, 𝑆2, ..., 𝑆𝑚}, network storages 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠 = {𝐹1, 𝐹2, ..., 𝐹𝑟} and OpenFlow controller 𝐶𝑜𝑛𝑡0,
edges 𝐿𝑖𝑛𝑘𝑠 = {𝐿𝑖𝑗} represent bidirectional network links. Type of each network device 𝑑 ∈ 𝐷
can be determined by function 𝑡𝑦𝑝𝑒 : 𝐷𝑒𝑣𝑖𝑐𝑒𝑠 → {”𝑛𝑜𝑑𝑒”, ”𝑠𝑤𝑖𝑡𝑐ℎ”, ”𝑠𝑡𝑜𝑟𝑎𝑔𝑒”, ”𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟”}.

𝐶𝑜𝑛𝑡0 is a special computing node executing OpenFlow controller (network operating system).
Function 𝑤𝑛. for each computing node 𝑁𝑖 calculates the vector of its characteristics

𝑤𝑛.(𝑁𝑖) = (𝑤𝑛.𝑠𝑡𝑎𝑡.(𝑁𝑖), 𝑤𝑛.𝑑𝑦𝑛.(𝑁𝑖, 𝑡)), (2)

where 𝑤𝑛.𝑠𝑡𝑎𝑡.(𝑁𝑖) and 𝑤𝑛.𝑑𝑦𝑛.(𝑁𝑖, 𝑡) are respectively denote static parameters and dynamic char-
acteristics of 𝑁𝑖. Node static parameters are represented by a vector

𝑤𝑛.𝑠𝑡𝑎𝑡.(𝑁𝑖) = (𝑀𝑖, 𝐷𝑖, 𝐶𝑖, 𝑃𝑖) (3)

of its RAM size 𝑀𝑖, local disk size 𝐷𝑖, computing cores count 𝐶𝑖 and their performance charac-
teristics 𝑃𝑖 = (𝑃𝑖1, 𝑃𝑖2, ..., 𝑃𝑖𝐶𝑖

). Dynamic characteristics can be described by vector function:

𝑤𝑛.𝑑𝑦𝑛.(𝑁𝑖, 𝑡) = (𝑚𝑖(𝑡), 𝑑𝑖(𝑡), 𝑢𝑖𝑘(𝑡), 𝑣𝑚𝑖(𝑡)). (4)

Here 𝑚𝑖(𝑡), 𝑑𝑖(𝑡) are respectively denote available RAM and disk size at the time 𝑡 ≥ 0, 𝑢𝑖𝑘(𝑡) -
utilization of node 𝑁𝑖 core 𝑘 at the time 𝑡. 𝑣𝑚𝑖(𝑡) is a set of virtual machine instances running at
the time 𝑡. All this information can be collected at regular intervals by SNMP protocol.

Each OpenFlow switch 𝑆𝑗 ∈ 𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠 also has static parameters and dynamic characteristics:

𝑤𝑠𝑤.(𝑆𝑗) = (𝑤𝑠𝑤.𝑠𝑡𝑎𝑡.(𝑆𝑗), 𝑤𝑠𝑤.𝑑𝑦𝑛.(𝑆𝑗, 𝑡)). (5)

Static parameters of 𝑆𝑗 include the following values:

𝑤𝑠𝑤.𝑠𝑡𝑎𝑡.(𝑆𝑗) = (𝑇𝑝𝑗, 𝑃 𝑐𝑗, 𝑂𝐹𝑗, 𝑇 𝑐𝑗, 𝑇 𝑠𝑗), (6)

where 𝑇𝑝𝑗 ∈ {”100 𝑀𝑏𝑖𝑡 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡”, ”1 𝐺𝑏𝑖𝑡 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡”, ”10 𝐺𝑏𝑖𝑡 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡”} denotes supported
version of Ethernet protocol, 𝑃𝑐𝑗 is a number of switch ports, 𝑂𝐹𝑗 ∈ {”1.0”, ”1.1”, ”1.2”, ”1.3”}
is a version of supported OpenFlow protocol. 𝑇𝑐𝑗 denotes a number of flow tables in the switch
𝑆𝑗. Each table has maximum 𝑇𝑠𝑗 flow entries.

Dynamic characteristics of the switch are represented by vector:

𝑤𝑠𝑤.𝑑𝑦𝑛.(𝑆𝑗, 𝑡) = (𝐹𝑡𝑗(𝑡), 𝑄𝑗(𝑡), 𝑃 𝑡𝑗(𝑡)). (7)

Here 𝐹𝑡𝑗(𝑡) = (𝐹𝑡𝑗1(𝑡), ..., 𝐹 𝑡𝑗𝑇𝑐𝑗(𝑡)) reflects the current state of all 𝑇𝑐𝑗 flow tables.
At the moment 𝑡 each flow table 𝐹𝑡𝑗𝑘(𝑡) contains 𝑅𝑐𝑗(𝑡) OpenFlow rules (flow entries). Each

of them has the following form:
𝑅𝑙 = (𝑀𝑡𝑙, 𝐶𝑛𝑙, 𝐴𝑐𝑙). (8)

𝑀𝑡𝑙 is a matching part of the rule, 𝐶𝑛𝑙 - statistical counters and 𝐴𝑐𝑙 represents the set of actions.
All incoming packets are compared against flow entries of the flow tables. If a matching entry is
found (its 𝑀𝑡𝑙 part is matched against incoming packet), then all actions of 𝐴𝑐𝑙 are performed on
the packet and counters 𝐶𝑛𝑙 are updated. Otherwise packet is forwarded to controller 𝐶𝑜𝑛𝑡0. The

72



Table 1. Header fields from packets used to match against flow entries

Ingress
port

Ether.
src.

Ether.
dest.

Ether.
type

VLAN
id

VLAN
prior-
ity

IP
src.

IP
dest.

IP
proto.

IP
ToS
bits

TCP/
UDP
src.
port

TCP/
UDP
dest.
port

contoller is responsible for determining how to process packets without flow entries in switches
flow tables, it manages the switches flow tables by adding and removing flow entries.

In OpenFlow protocol of version 1.0 [3] matching part has the header fields described in the
table 1.

Each header field can contain specific value or ANY value. This makes it possible to implement
different switching, routing and firewall schemes of traffic control.

𝐴𝑐𝑙 can contain the following actions [3]:
∙ Forward all. Send packet out all ports except its incoming port.
∙ Forward controller. Encapsulate and send packet to the OpenFlow controller.
∙ Forward local. Send the packet to the local networking stack of the switch.
∙ Forward table. Perform actions in the table.
∙ Forward in port. Send packet out the input port.
∙ Forward normal. Process packet without OpenFlow.
∙ Forward flood. Send packet along the minimum spanning tree, not including incoming port.
∙ Enqueue. Send packet to concrete QoS queue.
∙ Modify field. Changes the specific field of packet’s header.
Empty list of actions in 𝐴𝑐𝑙 means that packet should be dropped. The most usual action is

the forwarding of packet to specific port.
Counters are collected by OpenFlow for each flow entry. 𝐶𝑛𝑙 contains the following values

[3]:
∙ Received packets. Total number of packets matched against the flow entry.
∙ Received bytes. Total size of packets matched against the flow entry.
∙ Duration seconds. Duration in seconds of time the flow has been installed in the switch.
∙ Duration nanoseconds. Nanoseconds part of duration.
These metrics give the representation of the flow entries usage.
Also each flow table 𝐹𝑡𝑗𝑘(𝑡) contains dynamic metrics set 𝐶𝐹𝑡𝑗𝑘(𝑡) which incudes [3]:
∙ Active entries count.
∙ Packet lookups count.
∙ Packet matches count.
These values can be collected at regular intervals using OpenFlow protocol.
In (7) 𝑄𝑗(𝑡) represents a set of packet queues {𝑄𝑗𝑘𝑟(𝑡)} associated with specific switch port

and Type of Service (ToS) value. They are used to realize QoS mechanism, which maintains the
minimum guaranteed bandwidth on the given network links.

{𝑄𝑗𝑘𝑟(𝑡)} contains queue metrics including [3]:
∙ Transmit packets count.
∙ Transmit bytes count.
∙ Transmit overrun errors count.
These metrics are also can be collected by OpenFlow. They help to understand the efficiency

of QoS implementation in computing cloud.
𝑃𝑡𝑗(𝑡) = (𝑃𝑡𝑗1(𝑡), 𝑃 𝑡𝑗2(𝑡), ..., 𝑃 𝑡𝑗𝑃𝑐𝑗(𝑡)) (see (7)) is a set of dynamic port characteristics of

switch 𝑆𝑗. Port 𝑘 of switch 𝑆𝑗 can be described by values [3]:
∙ Port status (on or off).
∙ Total received packets count.
∙ Total transmitted packets count.
∙ Total received bytes.

73



∙ Total transmitted bytes.
∙ Total received packet dropped notifications.
∙ Total transmitted packet dropped notifications.
∙ Total received errors count.
∙ Total transmitted errors count.
∙ Total received frame alignment errors.
∙ Total received overrun errors count.
∙ Total received CRC Errors count.
∙ Total collisions count.
These metrics are collected at regular intervals by OpenFlow protocol. They help to discover

links and switches overloads, their failures.
Network storages keep virtual machine instances, application databases and computing cloud

infrastructure database. Any storage 𝐹𝑘 has vector of characteristics

𝑤𝑠𝑡.(𝐹𝑘) = (𝑉 𝑙𝑘, 𝑣𝑙𝑘(𝑡)), (9)

where 𝑉 𝑙𝑘 - maximum size of storage, 𝑣𝑙𝑘(𝑡) - its current size at the time 𝑡.
For each network link 𝑙𝑖𝑗 ∈ 𝐿 𝑤𝑙.(𝑙𝑖𝑘) (see topology graph (1)) denotes the vector of its static

parameters and dynamic characteristics:

𝑤𝑙.(𝑙𝑖𝑗) = (𝐵𝑖𝑗, 𝐿𝑎𝑡𝑖𝑗, 𝑏𝑖𝑗(𝑡), 𝑙𝑎𝑡𝑖𝑗(𝑡)), (10)

where 𝐵𝑖𝑗 is a maximum bandwidth of network link measured under condition of the contention
absence, 𝐿𝑎𝑡𝑖𝑗 is maximum latency, 𝑏𝑖𝑗(𝑡) - current bandwidth at the time 𝑡, 𝑙𝑎𝑡𝑖𝑗(𝑡) - current
latency. The last two characteristics consider network contention. They can be measured at
regular intervals by special software like ping and iperf.

Usage of proposed mathematical model

Advantages of the proposed cloud computing data center mathematical model:
∙ Detailed network topology description.
∙ Effective data structure representation.
∙ Support of multiprocessor nodes and virtual machine instances.
∙ Associating of cloud elements static parameters and dynamic characteristics.
∙ Support of OpenFlow protocol.
∙ Support of different OpenFlow counters.
∙ Ability of failure detection.
∙ Support of QoS mechanism.
∙ Ability of cloud’s QoS implementation efficiency evaluation.
Unified cloud computing data center representation as weighted undirected graph can be

used to solve different problems. Authors use it as a part of their scientific research related
to the development of cloud computing system based on OpenFlow. System has multitenant
architecture. Each tenant has a group of virtual machines connected by virtual network with
minimum guaranteed link bandwidths. System should maintain efficient simultaneous work of
many virtual machine groups on the same physical cloud hardware. OpenStack [4] is selected as
the basis for development of such cloud computing system.

OpenFlow helps authors to solve localization problem of traffic generated by groups of virtual
machines. After scheduling of virtual machines group cloud dispatcher transmits selected nodes
and group topology information to OpenFlow controller (see figure 1). Controller installs routing
rules to switches so as to localize data flows between virtual machines in the group. This leads to
decreasing of network contention and computation time (or response time) of software programs
executed in virtual machines. In this case cloud computing data center mathematical model is
used to build efficient data flows.

74



Dispatcher

Virtual machines 

group

Filtering 

nodes list

Custom weighting of nodes

Cloud state 

request

Resources

Resources

Resources

Nodes capabilities

Network manager 

service

Network and topology 

capabilities

Selected 

nodes list 

Nodes list

OpenFlow 

controller

Network 

managment

Request

Nodes list and topology

Host list

Allocation of virtual machines group

Scheduler

Figure 1. Principle scheduling scheme in the cloud computing system.

OpenFlow and presented model are also used for implementation of QoS mechanism, which
allows to setup minimum guaranteed bandwidth for links.

Conclusion

Adequate mathematical model of cloud computing data center based on OpenFlow standard
1.0 is proposed. It can be used to implement efficient traffic routing schemes which localizes data
flows between virtual machines in the groups, decreases network contention and increases overall
cloud efficiency.

Proposed mathematical model will be used in cloud computing system based on OpenFlow
and developed by authors.

Research was supported by the federal target program ”Research and development in pri-
ority fields of scientific and technology complex of Russia in 2007 - 2012” (state contract no.
07.514.11.4153) and Russian Foundation for Basic Research (project no. 12-07-31089).

References

[1] OpenFlow - Enabling Innovation in Your Network. http://www.openflow.org/
[2] OFELIA: OpenFlow in Europe. http://www.fp7-ofelia.eu/.
[3] OpenFlow Switch Specification, Version 1.0.0. http://www.openflow.org/documents/openflow-

spec-v1.0.0.pdf
[4] OpenStack Open Source Cloud Computing Software. http://www.openstack.org/.

Authors

Petr Nikolaevich Polezhaev — assistant, faculty of mathematics, Orenburg State Univer-
sity, Orenburg, Russian Federation; E-mail: peter.polezhaev@gmail.com

Alexander Eugeniyevich Shukhman — candidate of pedagogic sciences, associate
professor, faculty of mathematics, Orenburg State University, Orenburg, Russian Federation;
E-mail: shukhman@gmail.com

Yuriy Alexandrovich Ushakov — candidate of engineering sciences, associate professor,
faculty of information technologies, Orenburg State University, Orenburg, Russian Federation;
E-mail: unpk@mail.ru

75


