
TuningGenie — an autotuning framework for optimization
of parallel applications

P. Ivanenko

Paper proposes software tool for automatic generation of autotuners — special kind of appli-
cations to optimize running time of parallel applications in target computing environment. Tra-
ditional approach to autotuners creation is amplified by utilizing facilities of rule-based rewriting
framework for code transformation purposes. Experimental results show effectiveness of this ap-
proach and exhibit ease of use of presented framework.

Introduction

In software development for any field optimization phase is both significant and complicated.
This phase is extremely sophisticated and resource-intensive when major aim is to create appli-
cation which will be efficient in various multiprocessor environments. An autotuning [1], [2] is a
modern approach for resolving this issue. Autotuner is separate software which optimizes target
software. Optimization typically consists of generating different, but predefined in common sense,
variations of optimized software and selecting the most efficient one based on empirical evaluation
in target environment. A usually chief criterion of effectiveness is running time. Main advantage
of autotuning is in one-time optimization for execution environment — derived variation is most
effective until environment configuration remains changeless. Autotuning methodology on con-
trary to parallel compilers does not require complex source code analysis. It makes possible to
create generalized framework which is independent from host programing language, application
domain and can be applied for optimizing software for various computing environments - from
mobile devices to hybrid clusters. Object of this article is to introduce such framework.

Autotuning — state of the art

There has been solid investigation of search-based autotuning for high-capacity computing.
Among them it’s worth to mention such well-known systems as ATLAS [3] or FFTW [4]. They
utilize autotuning approach to generate high-performance platform-specific libraries in target op-
erational environment. Weakness of this approach is that such solutions are not generic — they
propose highly-efficient implementation of most common operations for specific application do-
main.

Contrary to previous systems Atune-IL [2] proposes an instrumentation language for auto-
tuning which is usable with any programming language, application domain, supports nested
parallelism and uses #pragma-based approach to define domain where optimal configuration is
searched. In general it allows defining different values for inner program variables that will be
probed during instrumentation. For code transformations StringTemplate [5] is used.

Problem statement

Motivation for this research is idea to create autotuning framework that is independent from
programming language and application domain, is able to perform structural code transformations,
provides performance monitoring support and allows easily introducing numerical information
about target platform (RAM/CPU access speed, basic arithmetic operations execution time, etc.)
to parallel programs.

TuningGenie

TuningGenie is autotuning framework that works with source code of application. It uses
similar to described in [2] #pragma-based approach to pass expert knowledge from developer to

27

tuner. It’s important to mention that it doesn’t automatically parallelizes input application but
generates separate version of program for each defined by developer parameters configuration.
To achieve desired flexibility in code conversion TuningGenie uses TermWare [6] — rule-based
rewriting framework. TermWare transforms source code into term, executes rewriting rules and
transforms resulted term back to text representation. Such technology allows not only perform
simple substitutions in source code but to enter structural changes in program’s algorithms which
excels capabilities of existing autotuning frameworks. For instance, it can experiment with data
traversal directions (described below pragma bidirectionalCycle). It also contains knowledge base
to store facts and operate with them in term transformation phase (this feature is used in described
below pragma calculatedValue). TermWare uses own syntax for rules definition, comes with “out of
the box” parsers for Java and FORTRAN language and can be easily extended to add support for
other programming languages. In scope of this work probing part of TuningGenie was implemented
only for Java applications. It uses custom class loader to reload and benchmark optimized software
variations.

In general following diagram describes tuning cycle:

Currently framework contains three main pragmas for tuning configuration definition:

∙ tuneAbleParam — defines range of values for numeric variable. Can be used, for instance,
to find size of optimal data decomposition in algorithms that fit “divide-and-conquer” or
“geometric decomposition” patterns [7]. An example of resource-critical program which
performance considerably depends on granularity of data decomposition is considered in
previous work of author “Automatic optimization of meteorological forecasting problem”
[8];

∙ calculatedValue — specifies function that will be calculated during instrumentation and
variable that will be initialized by this function’s result. Allows execute benchmark in
target environment and embed empirically-derived data into optimized program;

∙ bidirectionalCycle — this pragma points that direction of cycle iteration does not affect
result of calculation and can be changed to inverse. Allows TuningGenie to experiment
with data traversal (efficiency of using system caches in particular) and see impact on
application’s performance;

These three pragmas allow performing optimization for quite extensive class of applications but as
a simple demo-example let’s consider how TuningGenie can be applied for simple sorting algorithm
optimization.

Experiment

As a demo example let’s see how parallel sorting algorithm can be tuned. Chosen hybrid algo-
rithm is based on classic parallel implementation of merge-sort. Modification consists in switching
to insertion sequential sorting method when size of array becomes less than threshold. Such mod-
ification is reasonable since insertion sort is known to be faster on small arrays. Autotuner’s task

28

consists of empirically finding a value of this threshold. The only modification needed to perform
it is a single tuneAbleParam pragma:

//tuneAbleParam name=threshold start=10 stop=500 step=10

int threshold = 10;

....................................

if (high - low < threshold) {

insertionsort(a, low, high);

return;

}

int m = (low + high) / 2;

invokeAll(new SortTask(a, tmp, low, m),

new SortTask(a, tmp, m + 1, high));

merge(a, tmp, low, m, high);

....................................

TuningGenie will consequently generate variations of source code for threshold value from [10 -
500] range with step equal to 10, compile and benchmark it. The fastest variation for target
environment will be stored to be used in future calculations.

For benchmarking array with 2 million integers was sorted. Configuration of environment:

∙ Intel R○ CoreTM i5-2410M Processor (3M Cache, up to 2.90 GHz)
∙ 4 GB DDR2 RAM

Optimal value of threshold was proven to be 120 and this configuration was 23% faster than
variation with initial threshold value equal to 10.

Conclusion

Autotuning is a powerful methodology for software optimization which also significantly short-
ens development time. Taking advantage of rewriting rules technique for code transformation
considerably strengthens methodology of automatic software optimization. Presented framework
allows abstracting software development away from target environment details while guaranteeing
optimality of software’s runtime execution. TuningGenie easily provides to applications empirically
derived data about running environment and simplifies benchmarking of software. Experiment
demonstrated ease of use and effectiveness of introduced framework. In further work functionality
for performance data analysis can be added to framework. Usually a lot of configurations are
probed during application tuning so structured and visualized information about their impact on
performance can be very useful for developers.

References

[1] K. Asanovic et al, ”The Landscape of Parallel Computing Research: A View From Berkeley”
// Technical Report, University of California, Berkeley, 2006.

[2] Schaefer C.A., Pankratius V., and Tichy W.F., ”Atune-IL: An instrumenta- tion language for
auto-tuning parallel applications” // Euro-Par ’09 Proc. 15th Int.Euro-Par Conf. on Parallel
Processing Springer-Verlag Berlin, Heidelberg 2009.

[3] R. Whaley, A. Petitet, and J.J. Dongarra, ”Automated empirical optimizations of software
and the ATLAS project” // Parallel Computing, 27(1-2), pp. 3-35, Jan. 2001

[4] M. Frigo and S. Johnson, ”FFTW: An adaptive software architecture for the FFT” // Acous-
tics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Con-
ference on, vol. 3, pp. 1381-1384 vol.3, 1998.

[5] T. Parr. The StringTemplate Homepage. ℎ𝑡𝑡𝑝 : //𝑤𝑤𝑤.𝑠𝑡𝑟𝑖𝑛𝑔𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒.𝑜𝑟𝑔/.

29

[6] TermWare ℎ𝑡𝑡𝑝 : //𝑤𝑤𝑤.𝑔𝑟𝑎𝑑𝑠𝑜𝑓𝑡.𝑢𝑎/𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠/𝑡𝑒𝑟𝑚𝑤𝑎𝑟𝑒 𝑟𝑢𝑠.ℎ𝑡𝑚𝑙
[7] T. Mattson, B. Sanders, B. Massingill, ”Patterns for Parallel Programming” // Addison-

Wesley Professional, Reading, MA, 2004.
[8] P.A. Ivanenko, A.Y. Doroshenko, ”Automatic optimization of meteorological forecasting prob-

lem” // Programming problems. - 2012. - N 2-3. pp. 426-434.

Authors

Pavlo Andriiovych Ivanenko — junior researcher, Institute of Software Systems of Na-
tional Academy of Sciences of Ukraine, Kiev, Ukraine; E-mail: paiv@ukr.net

30

