
Selection algorithm of graphic accelerators in
heterogeneous cluster for optimization computing

A. M. Lavreniuk, M. S. Lavreniuk

The paper highlights the question of the optimal GPU computers selection for kernels in
OpenCL when they are starting on heterogeneous clusters where different types of GPU are used.
The authors propose optimal GPU selection algorithm that helps to get the best efficiency while
program execution using GPU.

Introduction

The accelerators, especially graphic (GPU) are commonly used while constructing large and
small clusters. A lot of such clusters already are available as grid nodes in Grid [1]. To increase
the productivity of calculations on these clusters and Grid it is recommended to use many GPU
that are available on the node simultaneously, for task execution [2]. Accordingly, the situation
may occur when a program is executed in GPU of different architecture and different generations
[3].

We can define two leaders in the production of graphic cards that support parallel computing.
They are NVIDIA, AMD and have some differences. For example, vector operations are not
supported in the GPU NVIDIA but are supported in the AMD, besides at different GPU the
lengths of certain types vectors are different.

Kernel written in OpenCL [4] works with the different productivity on GPU with diverse
architecture and different generations [2]. Even GPU computers that where produced with one
manufacturer but belong to different generations have various productivity with almost identical
parameters. This is confirmed by an experiments that have been carried out. When the execution
time of the program in very short (up to several minutes), then this problem is not significant.
But if the program runs for many hours or even days, for example, while solving the problem of
rapid synthesis of 3D seismograms in 2.5D model [5], then the non-optimal choice of GPU for
kernels execution in OpenCL on cluster total execution time can increase almost in 1.5 times. It
can be several hours or even several days depending on the problem.

The problem of OpenCL kernels distribution between several GPU

Within software development SDK (software development kit) from the company’s products
GPU NVIDIA proposed next mechanism for GPU selection as the C++ function:

cl_device_id oclGetMaxFlopsDev(cl_context cxGPUContext)

{...

max_flops = compute_units * clock_frequency;

...}

So the maximum GPU productivity is equal to the product of the number of parallel compute
units by maximum clock frequency of the device:

𝑚𝑎𝑥 𝑓𝑙𝑜𝑝𝑠 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 * 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, (1)

where 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 - number of parallel compute units, 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 - maximum clock fre-
quency. Below in table 1 the main GPU parameters are presented for different manufacturers and
different generations that have been software derived (function oclGetMaxFlopsDev).

As seen from the table, the value 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 for ATI RV770 is equal 0, and, consequently,
to the formula (1) 𝑚𝑎𝑥 𝑓𝑙𝑜𝑝𝑠 = 0, which is contrary to reality.

41



Table 1. Main GPU parameters
Parameter Value
CL DEVICE NAME Tesla M2050 GeForce GTX

260
Cayman ATI RV770

CL DEVICE MAX COMPUTE UNITS 14 27 24 10
CL DEVICE MAX CLOCK FREQUENCY 1147 MHz 1242 MHz 830 MHz 0 MHz

We must note that the parallel compute units consist can contain different number of unified
processors depending on GPU generation and as it is shown at fig. 1 and 2, GPU Tesla M2050 is
faster than GeForce GTX 260 especially with a large data amounts. However, according to table,

Figure 1. Dependence of computation time and
time data exchange on the amount of data for GPU
NVIDIA Tesla M2050.

Figure 2. Dependence of computation time and
time data exchange on the amount of data for GPU
NVIDIA GeForce 260.

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 Tesla M2050 is less than GeForce GTX 260 and 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 for Tesla M2050¡
GeForce GTX 260. And we can see the contradiction again. The same situation is with GPU
Cayman, which is the part of last generation AMD Radeon HD 6990 - 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑢𝑛𝑖𝑡𝑠 is less that
GeForce GTX 260. So, equation (1) will provide us with incorrect result for the optimal GPU
selection for task execution on cluster with GPU.

Optimization of kernel’s distribution in OpenCL for few GPU

We suggest an approach for the optimal GPU selection, which is based on a set of computa-
tional tests of different complexity which are necessary to execute on GPU. These tests contain
the basic operations used in the program. Operating time of the test should be substantially less
than the operating time of the entire program, for example, no more than 0.01 * 𝑇𝑝, where 𝑇𝑝 -
approximate operating time of the entire program (the control program and the kernels). The
algorithm is as follows:

∙ check the types of available GPU with CL DEVICE NAME;

∙ if CL DEVICE NAME in all GPU are the same, then we choose necessary amount of
computing devises and start kernels on them;

∙ if CL DEVICE NAME are different, then we make a test and calculate the value of isCalc
using formulas (2) and (3);

∙ if 𝑖𝑠𝐶𝑎𝑙𝑐 = 𝑡𝑟𝑢𝑒, then we use chosen GPU, otherwise we check for the other GPU computing
devise.

Using suggested formula 2, we determine whether it is necessary to put on particular GPU
kernels in OpenCL.

𝑖𝑠𝐶𝑎𝑙𝑐 =

{︃
𝑡𝑟𝑢𝑒, if 𝑃𝑖 <= 𝑐 *𝑚𝑎𝑥(𝑃1..𝑛);

𝑓𝑎𝑙𝑠𝑒, if 𝑃𝑖 > 𝑐 *𝑚𝑎𝑥(𝑃1..𝑛).
(2)

where 𝑃𝑖 - total time of making test on GPU 𝑖 computing devise, 𝑐 - coefficient, which can take it’s
values from 0..1, it depends on the complexity of the task, optimally 0.8, 𝑖 = 1..𝑛, 𝑛 - the amount
of GPU computing devises.

42



Using formula (3), 𝑃𝑖 - can be presented as the sum of operating time of kernel and time
spent on exchange operations of big data amounts between main program and kernel.

𝑃𝑖 = 𝑘1 * 𝑇𝑖 + 𝑘2 * 𝑇 ′
𝑖 (3)

where 𝑇𝑖 - execution time of one iteration of test on GPU 𝑖 computing devise, 𝑘1- the amount
of iterations in one test, 𝑇 ′

𝑖 - data exchange time with GPU 𝑖 computing devise for test, 𝑘2 - the
amount of data exchange operations between control program and kernel in one test. In our
experiments 𝑘1 = 100, 𝑘2 = 2. The results are shown on fig. 1 and 2.

At first sight, the data exchange time is negligible, if before the computing data is loaded on
GPU, and after the end of long calculations results are loaded into RAM. However, when during
a long time of calculations extra data are downloaded in few iterations to GPU or reading of
intermediate results in GPU, then the data exchange time between PC and GPU becomes an
important indicator, that significantly affects the overall computation time.

Conclusions

When you run tasks on heterogeneous GPU clusters, architecture of which you do not know,
as it often happens in the case of calculations in Grid, the proposed approach enables:

∙ to conduct rapid testing of productivity of GPU;
∙ optimally select GPU computing devises, excluding not productive enough for a particular

problem;
∙ to execute the task in the optimum time.
The future work will be focused on structuring the tests according to their complexity and

operating time. Find right minimal sufficient set of tests especially with regard for all types of
different GPU architectures and generations. We plan to make the following tests in the form of
program library with subsequent placement on clusters of GPU. This will make their practical use
more simple and effective for clusters and grid nodes with GPU calculations optimization.

References

[1] Lizandro Solano-Quinde, Zhi Jian Wang, Brett Bode, and Arun K. Somani. Unstructured
grid applications on GPU: performance analysis and improvement —In Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-4).
ACM, New York, NY, USA, Article 13, 8 pages

[2] Chris Jang. OpenCLTM Optimization Case Study: GATLAS - Designing Kernels with Auto-
Tuning, http://golem5.org/gatlas/CaseStudyGATLAS.htm

[3] Marcus Hinders. GPU Computations in Heterogeneous Grid Environments, Joint Research
Report, http://www.techila.fi/technology/technology-docs/

[4] OpenCL - The open standard for parallel programming of heterogeneous systems,
http://www.khronos.org/opencl/

[5] Marmalevski N.Ya, Merschyy V.V, Roganov Yu.V, Tulchinsky V.G, Yushchenko R.A CUDA
Application for rapid synthesis of 3D seismograms in 2.5D model —Calculations in geology,
Moscow-2011, N3, pages. 8-12.

Authors

Alla Mykolaivna Lavreniuk — PhD, Associate Professor, National Technical University
of Ukraine ”Kyiv Polytechnical Institute”, Institute of Physics and Technology, Kiev, Ukraine;
E-mail: alla.lavrenyuk@gmail.com

Mykola Serhiiovych Lavreniuk — the 3d year bachelor, faculty of cybernetics, Taras
Shevchenko national university of Kiev, Kiev, Ukraine; E-mail: nick 93@ukr.net

43


