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Well-known Conway’s Game of Life is usually played on the infinite plane board. We introduce
it on finite surfaces without boundaries: the torus, the Klein bottle and the projective plane. An
effective algorithm for the exhaustive search of stable and repeating patterns is suggested. We
present patterns which have much longer periods of oscillating than patterns of the comparable
size in the classic Game of Life.

Introduction

Conway’s Game of Life is a cellular automaton on the two-dimensional orthogonal grid of
square cells, each of which is alive or dead. Its evolution is fully determined by the initial state.
Each cell has eight neighbours in horizontally, vertically, or diagonally adjacent cells. At each step
any cell with ≤ 2 or ≥ 3 neighbours become dead and any cell with exactly 3 neighbours become
alive.

In spite of such simplicity of rules many patterns have long and executable evolution. Gener-
ally one can classify all non-vanishing patterns as evolving to still lives which are stable, oscillators
which are periodically oscillating, and aperiodic patterns (including so-called gliders, guns, puffers,
rakes and others).

The infinite size of the board causes that most of the combinatorial-optimization problems
are very hard. The aim of this paper is to study patterns on finite boards without boundaries.
The case of a surface with boundaries (e. g., square board) is just cropped Game of Life with
border effects, so it seems to be not very interesting.

Namely we start with square 𝑁 ×𝑁 board and glue opposite sides. If we glue them without
twist we obtain board-torus 𝑆2

𝑁 ; if we twist before gluing one pair of sides we obtain board-Klein
bottle 𝐾𝑁 ; and in the case of the both pairs of sides twisted we get board-projective plane 𝑅𝑃 2

𝑁 .
We shall refer to these types as to board’s topology.

Some very tentative results of our study were published in [1].

Taking into account a finite number of states no aperiodic patterns exists on the finite boards.
So we are interested in stable (having period 𝑇 = 1) and periodical (𝑇 ≥ 2) patterns. Our goal is
to list by the exhaustive search all such patterns on 𝑆2

𝑁 , 𝐾𝑁 and 𝑅𝑃 2
𝑁 for small values of 𝑁 .

Algorithm

For fixed board 𝑁 × 𝑁 let 𝐵 = {0, 2𝑁2 − 1} be the set of all possible patterns and let
𝐸 : 𝐵 → 𝐵 be the evolution operator, which maps pattern to its state on the next turn. So search
for oscillators is a search for patterns 𝑝 such that 𝑝 = 𝐸𝑇𝑝 for some 𝑇 > 0.

We call operator 𝑀 : 𝐵 → 𝐵 as a move operator if it commutes with 𝐸. In other words
𝑀𝐸𝑝 = 𝐸𝑀𝑝 for all 𝑝 ∈ 𝐵. We have proved the following statement.

Proposition. Pattern 𝑝 ∈ 𝐵 is periodic if and only if (not necessary distinct) move operators
𝑀1, . . . ,𝑀𝑘 exist such that

𝑀1𝐸 · · ·𝑀𝑘𝐸𝑝 = 𝑝.

In this case 𝑘 is called a quasi period of 𝑝.

It is hard to determine analytically the complete set of move operators, but for the need of
our algorithm it is enough to use even incomplete one. (Though in general the more the better.)
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In the case of 𝑆2
𝑁 shifts by both dimensions, rotations at 90∘, reflections and their combinations

are move operators. On 𝐾𝑁 move operators include shifts by one dimension, rotation at 180∘ and
reflections. And the only known move operators for 𝑅𝑃 2

𝑁 are rotations at 90∘ and reflections.
For the given set of move operators {𝑀𝑘}𝑟𝑘=1 we define norm operator || · || such that

||𝑝|| = min{𝑀𝑘𝑝}𝑟𝑘=1.

Now we are ready to write down our algorithm in pseudocode:

𝑠𝑡𝑎𝑐𝑘 ← ()
𝑝𝑒𝑟𝑖𝑜𝑑𝑠← {}
for 𝑝← 1..2𝑁2

𝑝′ ← ||𝑝||
if 𝑝′ < 𝑝 ∨ 𝑝′ ∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 then

continue;
while 𝑝′ > 𝑝 ∧ 𝑝′ ̸∈ 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 ∧ 𝑝′ ̸∈ 𝑠𝑡𝑎𝑐𝑘

push(𝑠𝑡𝑎𝑐𝑘, 𝑝′);
𝑝′ ← ||𝐸𝑝′||

if 𝑝′ ̸∈ 𝑠𝑡𝑎𝑐𝑘 then
𝑠𝑡𝑎𝑐𝑘 ← ()

else
while 𝑠𝑡𝑎𝑐𝑘 ̸= ()

𝑘 ← pop(𝑠𝑡𝑎𝑐𝑘)
𝑝𝑒𝑟𝑖𝑜𝑑𝑠← 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 ∪ {𝑘}
if 𝑘 = 𝑗 then

𝑠𝑡𝑎𝑐𝑘 = ()

Implementation

The suggested algorithm was implemented in the following way.
First, a program written in PHP determines an evolution operator 𝐸 for a given board

topology and size. Then it generates all known move operators, combines them and removes
duplicates. For the obtained set the norm operator is built. Finally all this data is translated into
optimal C-code and saved to file. Language PHP was chosen for this task because of the easy
string operating and the abilities of the functional programming.

Secondly, a C-program is compiled and run. It is the heart of the computational process. It
performs an exhaustive search of all positions due to the algorithm above and can be parallelized
easily. It uses self-written implementation of single-linked lists and Glib for b-tree manipulating.
This program have to work for a long time, so it dumps its state to disk periodically and these
dumps can be loaded in. Finally it returns a list of periodic patterns.

Thirdly, a utility written in C postprocess the list of patterns to remove duplicates and
determine periods. A statistical report is generated by a simple AWK-script.

Results

An exhaustive search for 2 ≤ 𝑁 ≤ 6 was completed. Calculations for 𝑁 = 7 are still
evaluating, for now only tentative results are available. Results are presented in table 1.

Case of board’s size 𝑁 = 8 seems to be far beyond our computation abilities.
One can compare table 1 with the smallest known oscillators on the infinite board [2] and

see that in the case of finite boards without boundaries there are much more compact and small
patterns almost for all values of 𝑇 . For example, there is no known oscillator with 𝑇 = 38 on the
infinite board — and we have one on 𝑅𝑃 2

7 .
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Table 1. Periodical patterns and their periods

𝑁 𝑆2
𝑁 𝐾𝑁 𝑅𝑃 2

𝑁

2 𝑇 = 1 𝑇 = 1 𝑇 = 1, 2
3 𝑇 = 1 𝑇 = 1 𝑇 = 1
4 𝑇 = 1, 2, 4, 8 𝑇 = 1, 2, 4, 8 𝑇 = 1, 2, 4, 18
5 𝑇 = 1, 2, 3, 4, 5, 10,

20
𝑇 = 1, 2, 3, 4, 5, 10,
20,

40

𝑇 = 1, 2, 3, 4, 14

6 𝑇 = 1, 2, 3, 4, 6, 8,
12,

24

𝑇 = 1, 2, 4, 6, 8, 10,
12,

15, 48, 60

𝑇 = 1, 2, 3, 4, 5, 6,
8,

28
7 𝑇 = 1, 2, 3, 4, 6, 7,

8,
12, 14, 28

𝑇 = 1, 2, 3, 4, 5, 6,
7,

8, 9, 14, 28, 56

𝑇 = 1, 2, 3, 4, 5, 6,
7,

8, 14, 38, 56

Fork me on Github

Source code and lists of found periods will be available at
https://github.com/Bodigrim/finite-life
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