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Mealy and Moore automata determined onto trajectories in some polynomially parametric va-
riety in a finite ring are considered. Homomorphisms of investigated models are analyzed. Sets of
deterministic and non-deterministic automata are characterized. Criteria for following sets of de-
terministic automata are established: group automata, automata with source-states, automata with
flow-states, connected and strongly connected automata, automata with twins-states and automata
with 1-distinguishable states.

Introduction

Applications of combinatorial-algebraic models in modern cryptography [1] has stimulated
investigation of automata determined over finite algebraic systems. Besides, elliptic cryptography
based onto elliptic curves over finite fields [2] indicates deep inner links between modern cryptog-
raphy and algebraic geometry [3]. Thus, investigation of automata determined over varieties in
a finite ring is actual for algebraic automata theory as well, as for its potential applications in
modern cryptography. The aim of the given paper is investigation of automata determined onto
trajectories in some polynomially parametric variety in a finite ring.

Basic notions

Let 𝒦 = (𝐾,+, ·) (|𝐾| ≥ 2) be any finite ring, 𝒱𝑛,𝑚(𝒦) (𝑛,𝑚 ∈ N,𝑚 ≤ 𝑛) be the set of all
varieties V = {h(−→𝜏 )|−→𝜏 ∈ 𝐾𝑚} (|V| > 1), where h = (ℎ1, . . . , ℎ𝑛)𝑇 (ℎ1, . . . , ℎ𝑛 ∈ 𝐾[𝜏1, . . . , 𝜏𝑚])
and ℱ𝑚 be the set of easily computable 𝑓 : 𝐾𝑚 → 𝐾𝑚.

Any 𝑓 ∈ ℱ𝑚 determines on V the set 𝒯V,𝑓 of trajectories h(𝑃0),h(𝑃1), . . . (𝑃0 ∈ 𝐾𝑚),
where 𝑃𝑗+1 = 𝑓(𝑃𝑗) for all 𝑗 ∈ Z+. Let h ∘ 𝑓 be superposition of mappings 𝑓 and h, i.e.
(h ∘ 𝑓)(𝑃 ) = h(𝑓(𝑃 )) (𝑃 ∈ 𝐾𝑚).

Theorem 1. Any two distinct trajectories in 𝒯V,𝑓 (𝑓 ∈ ℱ𝑚) start from different points if and

only if there do not exist 𝑃
(1)
0 , 𝑃

(2)
0 ∈ 𝐾𝑚, such that 𝑃

(1)
0 ≡ 𝑃

(2)
0 (kerh) and 𝑃

(1)
0 ̸≡ 𝑃

(2)
0 (ker(h∘𝑓)).

We denote by ℱ𝑚,h the set of all 𝑓 ∈ ℱ𝑚, such that

(∀𝑃, 𝑃 ′ ∈ 𝐾𝑚)(𝑃 ≡ 𝑃 ′ (kerh) ⇒ 𝑃 ≡ 𝑃 ′ (ker(h ∘ 𝑓))).

Investigated models

Let V ∈ 𝒱𝑛,𝑚(𝒦) and Θ = {𝜃𝑖}𝑖∈Z𝑘
be some fixed family of elements of the set ℱ𝑚. We

determine the sets 𝒜(1)
𝑘,𝑙 (V,Θ) and 𝒜(2)

𝑘,𝑙 (V,Θ) of Mealy and Moore automata, correspondingly, via
systems of equations ⎧⎪⎨⎪⎩

𝑃𝑡+1 = 𝜃𝑥𝑡+1(𝑃𝑡)

q𝑡+1 = h(𝑃𝑡+1)

y𝑡+1 = r𝑥𝑡+1(q𝑡)

(𝑡 ∈ Z+),

and ⎧⎪⎨⎪⎩
𝑃𝑡+1 = 𝜃𝑥𝑡+1(𝑃𝑡)

q𝑡+1 = h(𝑃𝑡+1)

y𝑡+1 = r(q𝑡+1)

(𝑡 ∈ Z+),

where 𝑃0 ∈ 𝐾𝑚, q0 = h(𝑃0), r𝑖 : 𝐾𝑛 → 𝐾 𝑙 (𝑖 ∈ Z𝑘), r : 𝐾𝑛 → 𝐾 𝑙, and 𝑥𝑡+1 ∈ Z𝑘 (𝑡 ∈ Z+) (𝑥𝑡, q𝑡

and y𝑡 are, correspondingly, input symbol, the state and output symbol at instant 𝑡).
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Basic results

Let V𝑗 ∈ 𝒱𝑛𝑗 ,𝑚𝑗
(𝒦) (𝑗 = 1, 2), Θ𝑗 = {𝜃(𝑗)𝑖 }𝑖∈Z𝑘𝑗

be parametrization for V𝑗. If there exist a

pair of surjections Φ = (𝜙1, 𝜙2) (𝜙1 : V1 → V2, 𝜙2 : 𝐾𝑚1 → 𝐾𝑚2), such that 𝜙2(𝜃
(1)
𝑖 (−→𝜏 1)) =

𝜃
(2)
𝑖 (𝜙2(

−→𝜏 1)) and 𝜙1(h1(
−→𝜏 1)) = h2(𝜙2(

−→𝜏 1)) for all −→𝜏 1 ∈ 𝐾𝑚1 and 𝑖 ∈ Z𝑘, then a pair (V2,Θ2) is
determined to be a homomorhic image of the pair (V1,Θ1).

Theorem 2. If a pair (V2,Θ2) is a homomorphic image of the pair (V1,Θ1) then there exist

mappings Ψ𝑗 : 𝒜(𝑗)
𝑘1,𝑙1

(V1,Θ1) → 𝒜(𝑗)
𝑘2,𝑙2

(V2,Θ2) (𝑗 = 1, 2) such that for any automaton 𝑀 ∈
𝒜(𝑗)

𝑘1,𝑙1
(V1,Θ1)) the automaton Ψ𝑗(𝑀) ∈ 𝒜(𝑗)

𝑘2,𝑙2
(V2,Θ2)) is homomorphic image of an automaton

𝑀𝑗.

Theorem 3. 1. The set 𝒜(𝑖)
𝑘,𝑙(V,Θ) (𝑖 = 1, 2) is the set of deterministic automata if and only

if Θ is some family of elements of the set ℱ𝑚,h.

2. The set 𝒜(𝑖)
𝑘,𝑙(V,Θ) (𝑖 = 1, 2) is the set of non-deterministic automata if and only if Θ

consists some element of the set ℱ𝑚∖ℱ𝑚,h.
In the sequel only deterministic automata are considered. The set of all families Θ = {𝜃𝑖}𝑖∈Z𝑘

of elements of the set ℱ𝑚,h is denoted by 𝒲𝑘.
An automaton is a group one if every its input symbol determines some permutation of the

set of states.
Let ℱ (0)

𝑚,h be the set of all 𝑓 ∈ ℱ𝑚,h, such that

(∀𝑃, 𝑃 ′ ∈ 𝐾𝑚)(𝑃 ̸≡ 𝑃 ′ (kerh) ⇒ 𝑃 ̸≡ 𝑃 ′ (ker(h ∘ 𝑓))).

Theorem 4. 1. The set 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) consists of group automata if and

only if Θ is some family of elements of the set ℱ (0)
𝑚,h.

2. The set 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) consists of group automata if and only if Θ

consists some element of the set ℱ𝑚,h∖ℱ (0)
𝑚,h.

A state of an automaton is called to be:
1) a source-state, if there is no transition to it;
2) a flow-state, if no other state can be reached from it.
Two distinct states of an automaton are called to be twins-states if every input symbol

transforms them into the same state and reaction of automaton is the same.
Let 𝐾𝑚/ kerh = {𝐵1, . . . , 𝐵|V|}.

Basic types of states of an automaton 𝑀 ∈ 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) can be
characterized in the following way:

1) the set 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) consists of automata with source-states if and only if

Θ = {𝜃𝑖}𝑖∈Z𝑘
is some family of elements of the set ℱ𝑚,h∖ℱ (0)

𝑚,h, such that there exists 𝑗 ∈ N|V|,
such that

⋃︀
𝑖∈Z𝑘

𝑉 𝑎𝑙 𝜃𝑖 ⊂ 𝐾𝑚∖𝐵𝑗;

2) the set 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) consists of automata with flow-states if and only if Θ =

{𝜃𝑖}𝑖∈Z𝑘
is some family of elements of the set ℱ𝑚,h∖ℱ (0)

𝑚,h, such that there exists 𝑗 ∈ N|V|, such
that

⋃︀
𝑖∈Z𝑘

𝑉 𝑎𝑙 (𝜃𝑖|𝐵𝑗
) ⊂ 𝐵𝑗;

3) there are twins-states in an automaton 𝑀 ∈ 𝒜(1)
𝑘,𝑙 (V,Θ) if and only if there exist 𝑃1, 𝑃2 ∈

𝐾𝑚, such that the following three conditions hold: (i) 𝑃1 ̸≡ 𝑃2 (kerh); 2) 𝜃𝑖(𝑃1) ≡ 𝜃𝑖(𝑃2) (kerh)
for all 𝑖 ∈ Z𝑘; 3) 𝑃1 ≡ 𝑃2 (

⋂︀
𝑖∈Z𝑘

ker(r𝑖 ∘ h));

4) there are twins-states in an automaton 𝑀 ∈ 𝒜(2)
𝑘,𝑙 (V,Θ) if and only if there exist 𝑃1, 𝑃2 ∈

𝐾𝑚, such that the following two conditions hold: 1) 𝑃1 ̸≡ 𝑃2 (kerh); 2) 𝜃𝑖(𝑃1) ≡ 𝜃𝑖(𝑃2) (kerh)
for all 𝑖 ∈ Z𝑘.
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For any automaton 𝑀 ∈ 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) we determine the following or-
graph 𝐺𝑀 = (𝐾𝑚/ kerh,Γ𝑀): (𝐵𝑗1 , 𝐵𝑗2) ∈ Γ𝑀 (𝑗1, 𝑗2 ∈ N|V|) if and only if there exist 𝑟 ∈ Z𝑘,
such that 𝜃𝑟(𝐵𝑗1) ⊆ 𝐵𝑗2 .

The following propositions hold:
1) an automaton 𝑀 ∈ 𝒜(1)

𝑘,𝑙 (V,Θ) ∪ 𝒜(2)
𝑘,𝑙 (V,Θ) is connected (correspondingly, strongly con-

nected) if and only if or-graph 𝐺𝑀 is connected (correspondingly, strongly connected);
2) the number of components of connectivity (correspondingly, of strongly connectivity) of

transition graph of an automaton 𝑀 ∈ 𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ) is the same as the number of
components of connectivity (correspondingly, of strongly connectivity) of the or-graph 𝐺𝑀 ;

3) the diameter (correspondingly, the radius) of transition graph of an automaton 𝑀 ∈
𝒜(1)

𝑘,𝑙 (V,Θ)∪𝒜(2)
𝑘,𝑙 (V,Θ) is the same as the diameter (correspondingly, the radius) of the or-graph

𝐺𝑀 .
An automaton is called to be 1-distinguishable, if any two its distinct states can be distin-

guished by some input symbol.
The following propositions hold:
1) an automaton 𝑀 ∈ 𝒜(1)

𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) is 1-distinguishable if and only if the identity
kerh =

⋂︀
𝑖∈Z𝑘

ker(r𝑖 ∘ h) holds;

2) an automaton 𝑀 ∈ 𝒜(2)
𝑘,𝑙 (V,Θ) (Θ ∈ 𝒲𝑘) is 1-distinguishable if and only if the identity

kerh =
⋂︀

𝑖∈Z𝑘

ker(r ∘ h ∘ 𝜃𝑖) holds.

Conclusion

In the given paper Mealy and Moore automata determined onto trajectories in some polyno-
mially parametric variety in a finite ring are analyzed.

In terms of detailed analysis of structures of a variety V ∈ 𝒱𝑛,𝑚(𝒦) and of a set of trajectories
𝒯V,𝑓 the following two trends of research naturally arise: 1) detailed analysis of properties of
surjections Φ = (𝜙1, 𝜙2); 2) detailed analysis of structure of basic subsets of the set of automata

𝒜(1)
𝑘,𝑙 (V,Θ) ∪ 𝒜(2)

𝑘,𝑙 (V,Θ).
Taking into account potential application of investigated models in the process of design of

stream ciphers the third trend of research can be connected with detailed analysis of subsets of
reversible automata 𝑀 ∈ 𝒜(1)

𝑘,𝑙 (V,Θ) ∪ 𝒜(2)
𝑘,𝑙 (V,Θ).

The author is grateful to academician A.A. Letichevskij for his help and advice in the process
of research.
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