
Taxi service automation

A. Usov, A. Anikina, V. Stepanov

This paper describes the system of taxi service automation, which is based on the client-server
model. Server represented as Web service. The client part is divided into two mobile applications
for the Android OS: applications for the passenger and drivers. The server stores data about each
vehicle and distributes orders between taxi drivers. Application for driver is used to accept orders
and display the optimal route on the map. With the application for passenger customers can order
a taxi.

Introduction

The most common application of computer technology and new software aimed to automating
processes associated with manufacturing, accounting, communications and so on. Processes that
were previously performed by man, but now we can create software that will do all the hard work
for us.

The aim of this work is to develop a system for taxi service that will automate the dispatcher
work, simplify calling a taxi via mobile applications, speed up the process of selecting appropriate
car, optimize the usage of car resources by assessing road load factor, display the map of traffic
jams on driver‘s application, lead detailed statistics of service and so on.

Modern taxi in Ukraine have the following disadvantages:

∙ Non-optimal usage of car resources;

∙ There is a need to make a phone call to take a taxi, which can’t be comfortable sometimes;

∙ Taxi company have to handle a large number of dispatchers;

∙ The long process of selecting appropriate car;

∙ Taxi driver is often distracted by excessive information.

∙ conclusions;

Concept of the following system solves all these problems, making it relevant and unique in
its own way.

Server side

Server part of the system should receive and process requests from clients. There are three
types of clients:

∙ Users that want to order a taxi. Server must be able to receive request from the client, find
the best contender among drivers who will serve the client and alert driver about new order.
To choose the best contenders, server must provide the estimates of velocity on particular
roads at the moment.

∙ Drivers of taxi service. Server must be able to poll drivers whether they can server an
order. Also server must provide drivers traffic information.

∙ Volunteers that send and receive information about traffic. Server must be able to process
traffic data and store results in the database.

Due to the mentioned requirements the server part of the system was implemented. It consists
of such parts:

∙ Web-services for data exchange with clients.

∙ Taxi drivers choosing module.

∙ Statistical analysis module.

∙ Database containing roadmap and estimates of velocity on particular roads.

∙ Asynchronous messaging between different modules.

85

Statistical analysis module

One of the most important conditions for building efficient taxi management system is traffic
analyzing. The main aim of the statistical analysis module is to give an estimate of velocity for
any road anytime.

This idea was realized by creating users-volunteers. They send information about average
velocities on the roads. This information is gathered using GPS sensor, that’s why it is necessary
to bind sensor readings to the map in the database.

Suppose that data from clients-volunteers — their trajectory – is divided into tracks. Database
stores the roadmap as the set of ways and nodes — intersections.

The following algorithm for such binding is proposed:
1. Find the region (at the moment this area is a rectangle) that covers all probable ways-

candidates.
2. Extract ways from database that are located in this area.
3. For every client’s track find the way or the chain of ways with the smallest proximity

measure to the current track.
For every way database stores such parameters:

∙ Allowed speed.
∙ The last known velocity on the way and its timestamp.
∙ Estimates of velocities for every hour since 6 till 23 o’clock.

To calculate estimates of velocities we can just calculate the average of all velocities, received from
the clients. But this method has disadvantages like long memory and using additional fields in
the database.

That’s why it was proposed to use the following method. Suppose that every new value has
the constant weight 1/𝑁 . Then the new estimate is calculated as

𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 + 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑉𝑜𝑙𝑑/𝑁

where 𝑉𝑜𝑙𝑑 is an old estimate, 𝑉𝑛𝑒𝑤 is a new estimate of velocity on the way, 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the value,
received from client.

The process of estimate evaluating for particular way can be described as follows:
1. If the timestamp of the last known velocity is actual, return the last.
2. If the database contains needed estimate, return it.
3. Otherwise return the maximal allowed velocity.

Proximity measure

Figure 1. Track doesn’t cross the way Figure 2. Track crosses the way

The following algorithm to figure the proximity measure is proposed:
1. If the angle between way’s vector (𝐸𝐹) and track’s vector (𝐴𝐵) is less then 90 degrees

return infinity.

86

2. Project track 𝐴𝐵 onto a line that contains the way 𝐸𝐹 . Find the part of the projection
that lies between the vertices of the way 𝐸 and 𝐹 .

3. Build trapeze 𝐶𝐴𝐵𝐷, calculate it’s midline (𝐴𝐶 + 𝐵𝐷)/2.
4. Calculate proximity measure using the following formula:

𝜇 = 𝑆 × ℎ

𝑙
× 𝑑3 + 𝑑4

2

, where 𝑆 is an area of trapeze 𝐸𝐺𝐻𝐹 (Fig. 1) or two triangles △𝐸𝐶𝐺 and △𝐶𝐵𝐷, if
the track crosses the way (Fig. 2), ℎ is the length of way 𝐸𝐹 , 𝑙 is the length of projection
𝐶𝐷, 𝑑3 and 𝑑4 are the distances from points 𝐴, 𝐵 to the line 𝐸𝐹 .

Note: if the track crosses the way, 𝑆 can be calculated as:

𝑆 =
1

2
× ℎ× 𝑑12 + 𝑑22

𝑑1 + 𝑑2

Otherwise:

𝑆 =
1

2
× ℎ× (𝑑1 + 𝑑2)

Taxi drivers choosing module

Let the taxi station has 𝑛 vehicles. Among them have to be selected 𝑘 vehicles, which satisfy
client’s request the best. The aim is informing vehicles, which are closest to the chosen location.

To solve such problem was chosen algorithm 𝐴* which belongs to heuristic search
algorithms[2]. 𝐴* finds a least-cost path path between two graph vertex with positive weights of
edges. The algorithm uses an auxiliary function (heuristics) to guide the search direction and
shorten its duration. Algorithm is complete in the sense that it always finds the optimal solution,
if it exists. It uses a distance-plus-cost heuristic function of node (usually denoted 𝑓(𝑥)) to
determine the order in which the search visits nodes in the tree. The distance-plus-cost heuristic
is a sum of two functions:

∙ the path-cost function, which is the cost from the starting node to the current node (usually
denoted 𝑔(𝑥))

∙ an admissible ”heuristic estimate” of the distance from to the goal (usually denoted ℎ(𝑥)).
Function ℎ(𝑥) must be an admissible heuristic; that is, it must not overestimate the distance to
the goal. At each step, 𝐴* reviews all paths from the initial vertex to the end, until it finds a
minimum. Like all ”informed search algorithms”, it looks at first those routes that ”seem” leading
to the goal.

Client side

The client side consists of three types of applications for: passenger, taxi driver and volunteer.
Passenger application will send taxi orders to Server. A passenger has the ability to select the
departure and destination points and type of the vehicle. After the Server selects a car, passenger
will receive a message with information about the selected car.

Volunteer application will give an opportunity to see the map of the city with information
about traffic jams on user’s mobile device. Also, this application will gather information about
the speed of the car on the roads.

Application for taxi driver has the same functionality as a volunteer app, but allows to accept
or reject orders and evaluate passengers additionally.

Further an algorithm that allows to gather information about road conditions will be de-
scribed. The task is to break the trajectory of the car to the straight sections and send data about
the time of driving through these areas. As we don’t have the whole data sample, but it builds

87

gradually, so the local task is to determine the critical point where the car starts to turn. The
algorithm, based on linear regression analysis[3] was developed for this.

Description of the algorithm
GPS coordinates are tracking down during the whole work of the application. Once the

coordinates of the vehicle changed, their values stored in the list of coordinates to be processed.
These actions occur with some frequency.

The algorithm, which processes the coordinates starts when the list has more than ten items.
We have to determine longitude as a free variable, and latitude - as dependent for linear

regression. Then the following steps are performed:
1. A thread-safe lists 𝐴 and 𝐵 of size 𝑛− 10 is creating, where 𝑛 - number of items that need

to process;
2. In the cycle where 𝑖 = 0..(𝑛 − 10), set of items is divided into two subsets of 5 + 𝑖 and

𝑛− 5 − 𝑖 first points:
∙ For each subset two threads are creating;
∙ Each thread builds regression model for appropriate set of points 𝑦𝑖 = 𝑓(𝜔, 𝑥𝑖) + 𝜖, where
𝜔 - vector of unknown parameters, 𝜖 - additive random variable. We will seek the vector
of unknown parameters by the least squares method. Because we have to build a straight
line, so we define the dependence model, as 𝑦𝑖 = 𝜔1 +𝜔2𝑥𝑖 + 𝜖𝑖. According to the method
of least squares, the desired vector of parameters 𝜔 = (𝜔1, 𝜔2)

𝑇 - is the solution of the
normal equation: 𝜔 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦, where 𝑦 - vector, which consists of the values of the
dependent variable 𝑦 = (𝑦1, ..., 𝑦𝑚). The columns of the matrix 𝐴 is a free variable values
substitution 𝑥0

𝑖 → 𝑎𝑖1 and 𝑥1
𝑖 → 𝑎𝑖2. The matrix has the following form:

𝐴 =

⎛⎜⎜⎝
1 𝑥1

1 𝑥2

.
1 𝑥𝑚

⎞⎟⎟⎠
Dependent variable is restored from obtained parameters and given values of free variable
𝑦*𝑖 = 𝜔1 + 𝜔2𝑥𝑖. Criterion of sum of squared regression errors (SSE) is used for assessing
the quality of model:

𝑆𝑆𝐸 =
𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦*𝑖)2 = (𝑦 − 𝑦*)𝑇 (𝑦 − 𝑦*).

∙ Each thread writes value of the considered regression remainder of their set to the list 𝐴
and found regression model parameters to the list 𝐵;

3. When all threads will complete their work, such pair of subsets are chosen, which have the
least sum of regression remainders;

4. In the result we have equations of two lines: 𝑦1 = 𝜔1 + 𝜔2𝑥1 and 𝑦2 = 𝜔′
1 + 𝜔′

2𝑥2. Options
𝜔2 and 𝜔′

2 - are the angular coefficients and 𝑡𝑎𝑛−1𝜔2 and 𝑡𝑎𝑛−1𝜔′
2 - angles of slope. This

lines are the approximate trajectory of the vehicle;
5. Then the angle between the lines are found. If the tangent of the angle is greater than 𝑘,

then we can conclude that the car made a turn. The value of 𝑘 was selected experimentally.
It equals 0.785;

6. All points from the first subset lie on a straight part of the road. The first and the last
point of the first subset are sent to the server. Before that we find the difference between
the time when these coordinates were token from GPS sensor. This difference will be the
time, what the car spent to pass this segment of road;

7. The first subset are removed from the total set of points;
8. Items 1 - 7 are repeated until the new coordinates are coming.

88

Conclusion

As the result, using described algorithms, taxi automation system was built. This system fully
solves all the problems that have been mentioned in the introduction. With further development
of the project we plan to develop custom applications for all popular mobile platforms, such as
IOS, Windows Phone and Symbian. Also we plan to add rating system for drivers and passengers,
and an effective communication between server and drivers. We are going ahead to improve the
system into a real taxi service.

References

[1] Mathematical Statistics with Applications Dennis D. Wackerly,William Mendenhall,Richard
L. Scheaffer 2008

[2] Lauriere J.L. Artificial Intelligence Systems/from french 1991.
[3] John Wiley & Sons, Applied Linear Regression, Sanford Weisberg, 2005.
[4] Android developer‘s guide http://developer.android.com/guide/index.html

Authors

Andrii Vasylovych Usov — the 4th year student, faculty of cybernetics, Taras Shevchenko
national university of Kiev, Kiev, Ukraine; E-mail: andreusov13@gmail.com

Oleksandra Volodymyrivna Anikina — the 4th year student, faculty of cybernetics, Taras
Shevchenko national university of Kiev, Kiev, Ukraine; E-mail: saneshka2509@gmail.com

Vladyslav Valeriiovych Stepanov — the 4th year student, faculty of cybernetics, Taras
Shevchenko national university of Kiev, Kiev, Ukraine; E-mail: shto.shto.nu.horosho@gmail.com

89

