M-M/S-CD Memory Management for Second
Generation Microkernels

Ya. I. Klimiankou

The paper introduces a new memory management approach for second gener-
ation microkernels named M-M/S-CD that was designed in the spirit of minimality
principle. It was developed from scratch based on analytical model of computer mem-
ory system. M-M/S-CD memory management pushes out all memory management
activities and policies into the user mode applications, where kernel only enforces
two conditions are met that assure that memory system will remain in closed state.

Keywords: second generation microkernel, memory management

Introduction

Microkernel operating system design currently is still the most promising. In-
vented by the Mach project [1], microkernel design became very popular in scientific
society due to the number of significant advantages which it offers. Mach opened
a series of first-generation microkernels built in accordance with principle claiming
that kernel must be the only software module executing in privileged mode. Second
generation of microkernels was invented by Jochen Liedtke 1.4 project, which added
the minimality principle to the microkernel design. Minimality principle states :
“A concept is tolerated inside the microkernel only if moving it outside the kernel,
i.e., permitting competing implementations, would prevent the implementation of
the system’s required functionality” [2]. According to this principle, kernel must be
kept as small and simple as possible.

Memory management (MM) is one of the major and unavoidable functions
of the operating system (regardless of its design). MM is a process of planning,
organizing and controlling of computer memory use. In modern computer systems,
MM is performed in terms of a physical address space (PAS) and a virtual address
space (VAS), and can be divided into two disciplines: physical memory management
and virtual memory management. Memory management can’t be completely moved
from kernel to user space because memory is one of the most important system
resources and it requires access to the privileged CPU-provided facilities.

A number of second generation based microkernel operating systems has been
proposed, each of which addresses memory management in different ways. There
are two commonly adopted approaches: recursive address space construction [3, 4,
5] and capability-based memory management [6]. We believe that both are still
overcomplicated in regard to the minimality principle. The purpose of this paper is
to present another one approach to the memory management in context of second-
generation microkernels.

15



Analytical Model

Computer system memory can be represented by two entities: physical space
(PS) and virtual space(VS), where the first one is a set of all physical pages in the
system and the second one is a set of all virtual pages in the system. These two
sets can be further subdivided into four sets: physical pages mapped to the external
resources (PMP) and not mapped (PHP), virtual pages mapped to the external
resources (VMP) and not mapped (VHP). According to this, memory management
can be considered as an establishing of the mapping between physical space and
virtual space:

PS— VS

(PMP, PHP) s (VMP, VHP), L

where two conditions must be always met:
VP, € PMP, 3(P,— P;), P e VMP (2)
VP, € PHP, }(P;— P;), P; € VMP, (3)

where P is a memory page (either virtual or physical, depending to which address
space it belongs).

The first condition (2) is referred as memory leakage prevention. In context
of high level languages memory leak refers to keeping a memory block in use after
finishing its actual use. It can lead to exhaustion of available system memory or
available address space. In contrast to high level languages, memory leak in the
context of operating system memory management refers to exclusion of a memory
block from the pool of memory in use. Under the normal conditions it is expected
that all available memory of the system must be used to produce value and lost of
last reference to the memory block prevents its future use for value production. Due
to this operating system must enforce memory management system to keep at least
one reference (mapping to virtual memory page) for each physical memory page
linked to external resources.

The second condition (3) is referred as access violation prevention. As it was
mentioned above both PAS and VAS can include pages that are not linked to ex-
ternal resources. But processor behaves differently on attempts to access memory
in page that isn’t linked to any external resources in address spaces of both types.
Access to such page in PAS layout is almost completely invisible both for applica-
tion programs and for operating system. Data write to physical page not linked
to external resources will be ignored and data read from this page will return to
the reader an undefined value captured from the data bus. However, in both cases,
neither error signal will be generated by processor logic nor any other handling of
invalid access will be made. In contrast, CPU can detect access to the virtual pages
not mapped to physical pages and trigger exception in reply. This exception usually
invokes operating system to correctly handle invalid memory access. As a result VAS

16



can be used to protect software from access to the PAS pages not linked to external
resources. Access violation prevention assumes enforcing of the rule according to
which no one page of the PAS not linked to external resources must ever be mapped
to any VAS page. Enforcing two conditions described above is enough to turn the
computer memory system in the closed consistent system state. Due to it enforcing
these two conditions of memory management is the only activity that must be done
on the operating system kernel side. The rest of memory management activities and
policies can be safely implemented on the side of memory managers implemented
in user mode, which are free to manipulate mappings between PAS and VAS pages
until the conditions described above are hold in the true state.

M-M/S-CD Memory Management

There are two main requirements applied to the memory management system
described in the analytical model above:

e memory leakage prevention;

e access violation prevention.

Access violation prevention can be satisfied by providing guarantees from the
kernel design, according to which the initial PAS layout provided by third party
provider will be kept in the constant state. It means that no pages will be added or
removed to\from the PAS layout during the system lifetime. It is assumed, that third
party provider (for example system bootstrap module or node bootstrap module)
must deliver to the kernel a set of initial VASes consisting exclusively from mappings
to PAS pages associated with backend resources like RAM, ROM, memory-mapped
10 device registers. There must be no mapping to the PAS page belonging to the
PAS layout hole.

In contrast to the classical memory leakage problem that is usually considered in
the context of high-level programming languages, the memory leakage in the context
of kernel memory management means the loss of the last mappings to the particular
PAS page, and thus loss of the ability to incorporate that PAS page in any VASes
for future actual use by applications. Satisfaction of memory leakage prevention
requires explicit enforcing of memory management restrictions on the kernel side,
because associations between PAS pages and VAS pages can be established and
terminated dynamically, which in turn is true because VASes can be created and
destroyed by kernel in run time and VASes pages associated with VAS layout holes
can be converted into the VAS pages associated with actual PAS page memory and
vice versa. Due to this kernel must enforce the policy according to which it will be
impossible to lose the last mapping to the PAS page.

Both requirements described above can be satisfied by applying the memory
management model that is referred as M-M/S-CD. This model suggest dividing of
all VAS pages present in system into two classes: master pages and slave pages.
Each PAS page associated with backend resource is linked with exactly one master
VAS page, and thus that master page represents this PAS page in the system. M-
M/S-CD memory management suggests that the master page can not be created

17



or removed directly by kernel. The set of master pages is delivered to kernel by
third party component, such as boot loader, as part of kernel initialization process
and stays constant during the whole system lifetime. The only action that can be
applied to the master page is moving between different page slots in the same VAS or
between different VASes present in a system. In contrast, slave pages have dynamic
nature and can be created from the master page and destroyed multiple times over
the system lifetime. There can be multiple slave pages spawned by the same master
page at the same moment of time. As a result, according to the M-M/S-CD memory
model computer memory system is considered to be a closed system in relation to
master pages, which in their turn represent PAS pages associated with memory (see
Figure 1).

Outgoing VAS Incoming VAS

VAS

-- Master Page (Represent

PAS Page)
mmssmm - Slave Page (Represent
= ""‘\\\ Master Page reference)

VAS VAS
-- Empty Page Slot in VAS

-- Slave Page Termination
Point

Figure 1. M-M/S-CD Closed Memory System

The described M-M/S-CD model of a closed system of system memory implies

only three conceptual operations on memory pages:

e Moving of master page (svas, spfn, tvas, tpfn) - atomic operation that re-
moves master page from the spfn page slot from the svas virtual address
space and inserts it in the empty tpfn page slot in the tvas virtual address
space.

e Creation of slave page (svas, spfn, tvas, tpfn) - makes a copy of master page
from the spfn page slot from the svas virtual address space and inserts that
copy converted to a slave page in the empty tpfn page slot in the tvas virtual

18



address space.

e Destruction of slave page (svas, spfn) - removes the slave page from the spfn

page slot from the svas virtual address space.

To distinguish different page types in our prototype implementation on Intel
x86 platform, two of the three available for use bits of the page descriptor were used.
One of these bits is used to mark master pages and the second one is used for page
slot lock, that is required at least for master page moving operation. Thus page slot
has three bit flags: locked/unlocked, master/slave, present/absent.

Current Status and Conclusions

We developed the prototype of M-M/S-CD memory management facilities and
incorporated them in our experimental OS. But we still have not any application level
memory management service to check our solution in more real life environment.

Microbenchmarks showed that the overheads introduced by the basic memory
management operations are 673, 765 and 864 cycles appropriately for the create,
destroy and move operations. The empty system call introduces 373 cycles of the
overhead. As a result, the overhead introduced by the M-M/S-CD exclusively is 300,
392 and 491 cycles for the create, destroy and move operations respectively.

To check the M-M/S-CD memory management approach and measure its over-
head we plan to develop three user-mode memory managers (MM): paged MM,
unpaged MM and file-mapping MM.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young, “Mach: A new kernel foundation for unix development,” in Proceed-
ings of the “Technical Conference — USENIX”, pp. 93-112, 1986.

[2] J. Liedtke, “On pu-kernel construction,” in Proceedings of the “15th ACM sym-
posium on Operating Systems Principles”, pp. 237-250, ACM, 1995.

[3] A. Auand G. Heiser, L/ User Manual. Version 1.14. School of Computer Science
and Engineering, University of NSW, 1999.

[4] K. Elphinstone, G. Heiser, and J. Liedtke, L4 Reference Manual MIPS R/xz00
Version 1.11. School of Computer Science and Engineering, University of NSW,
1999.

[5] I. Kuz, L/ User Manual. NICTA L/-embedded API. Version 1.11. School of
Computer Science and Engineering, University of NSW, 2005.

[6] S. Gerber, “Virtual memory in a multikernel,” Master’s thesis, Department of
Computer Science, ETH Zurich, Switzerland, 2012.

Authors

Yauhen Ivanavich Klimiankou — the 2nd year postgraduate student, Fac-
ulty of Computer Systems and Networks, Belarussian State University of Informatics
and Radioelectronics, Minsk, Belarus; E-mail: Evgeny. Klimenkov@gmail.com

19



