
Relational-Object Mapping Technique

I. O. Likhatskyi

This paper is focused on describing a technique of creating object-relational
transformation components by using code generation system based on database struc-
ture. It reviews existing ORM solutions, as well as highlights their main advantages
and drawbacks. We describe a technique to create relational-object transformation
components by using code generation system to automatically generate persistence
layer based on the database structure. Text template engine is used to generate SQL
queries, business classes and APIs to access data from application code. Provided
default implementations are sufficient to quickly obtain working persistence layer.

Introduction

Nowadays along with information technology rapid development and data man-
agement systems evolution one of actual important problems arising in application
development is the choice of database management systems (DBMS), according to
the particularities of store data applications and effective management. On one
hand, the database should support the necessary degree of data abstraction, and on
the other hand, it should be focused on the structural features of data organization
and nature of use.

Currently widespread object-oriented development methodology of applied sys-
tems and the relational database management systems (RDBMS) dominate in the
world of data storage. Therefore, appropriate solution is to use the persistence layer
that provides the necessary object-oriented interfaces to access and manage the data
that is stored under the control of RDBMS [1, 2]. The relevance of this approach is
combined with well-known advantages of relational databases such as:

∙ ability to support legacy systems using traditional solutions;
∙ simplicity in using technology based on clear table model and mathematically

rigorous theory of relational algebra;
∙ widespread and thorough approbation of the proposed database products on

the market for many years;
∙ providing natural object-oriented API implemented for most popular pro-

gramming languages.
However, the mentioned data models for object-oriented and relational systems differ
significantly. Therefore, software developers face the need to implement conversion
between object-oriented and relational representation of the same data.

Creation of persistence layer is associated with a set of design solutions that
affect maintainability, performance, simplicity of use between the client application
and the database server.

Sometimes such conversion is implemented manually which makes code more ef-
ficient but involves a lot of routine work that is manually transforming each database
entity. In other cases, there can be used ORM [3], improving developer productivity,
but often sacrificing runtime performance and flexibility.

20



In this paper we describe our technique to create object-relational transfor-
mation by using code generation system to automatically generate persistence layer
based on database structure.

The database hiding problem

With birth of the RDBMS programmers have got the structures of logic level
and SQL to access the data. Thereby software developers got rid of knowing the
odds and ends of physical data storage organization. It turned out that most data
can easily be described in the form of tables and relations between them. Thus, it
has predetermined the success of relational databases.

The underlying data models for object-oriented and relational systems differ
significantly. This means that they describe the same entity but with different
parties: the relational model focuses on the structure and relationships between
entities and the object model – on their properties and behavior. The relational
model is used for information modeling, separating the essential attributes to save
their values and subsequent retrieval, processing and analysis. The object model
is largely used to simulate behavior separating the essential functions and their
subsequent use [4]. In practice we have a situation where the programs are written
mainly with the use of OOP, and then the data is stored in relational databases.
Thus, there is a need of mapping objects in relational structure and vice versa. There
are a lot of techniques that were developed in the late eighties and are reflected in
number of publications [5, 6, 7, 8, 9].

The component of a software system responsible for converting data from the
object into a relational form is called ORM (object-relational mapping) system. In
technology of mapping objects on the RDBMS, there is an important point. Some
people believe that the persistent generated by ORM layer generates SQL code,
which is similar to translating high-level language into machine native code. This
statement is wrong, and may also lead to the creation of hard-tracked systems with
potential performance problems.

The fact that SQL – is a high-level declarative language that belongs to the
fourth generation is unlike, for example, Java or C# that belongs to the third genera-
tion of imperative languages. For example, one SQL operator, performing something
a little more complicated than selected by key, demand to achieve the same result
much more rows in C# or Java [10].

This situation leads the ORM developers to create their own SQL-like language
to manipulate objects and then to translate it to SQL code. For example, HQL –
Hibernate Query Language – SQL-like query language that is used in Hibernate
/ NHibernate [11] or .Net Framework component – LINQ to SQL, which provides
run-time infrastructure for managing relational data as objects [12]. There is also
the possibility of using dynamic transformation of the SQL query into a collection
of objects.

Otherwise, we would have to extract large amounts of data from the database
and then process them directly in the application. Roughly the same data were

21



processed with no built-in SQL language. This approach is called the navigation
approach to manipulate the data, and it is also a typical for network and hierarchical
databases [13]. Nevertheless, getting the ORM, we get back to the navigation data
processing approaches in some extent.

Thus, there is a situation in which developers are trying to hide the lack of
RDBMS knowledge over an additional level of abstraction. In spite of the abstraction
level that is provided by ORM and reduces development time making the application
work effectively with RDBMS without basic knowledge of SQL is almost impossible.

ORM drawbacks

Using ORM tool to provide interaction between the applications and database
server, developers often faced with a number of problems. Once the developers
have implemented CRUD-logic using SQL directly is difficult. This concerns data
mapping strategies and application portability problems between databases. In fact,
every SQL query to the database is a kind of projection of the result set to a specific
class. In this regard, developers often have to use ORM query language (if supports).
Frequently such languages are not standard and do not have the tools for debugging
and profiling. For example, in the .NET since version 3.5, it is possible to use LINQ,
which can detect some errors at compile time.

The result is that the ORM query language generates not the most optimal
SQL code. To solve these problems developers often turn to partial processing data
within the application: selecting a collection of objects in cycles, or filtered, using the
same LINQ queries over the processed arrays, generating new queries. The number
of such queries to the database in such processing may number in the thousands.

Relational-object representation as an alternative to ORM

In this section we describe the relational-object representation technique that
can be used as a solution for converting data between incompatible type systems in
object-oriented programming languages.

The main task of relational-object design is to achieve maximum performance
in the interaction between the application and database server, as well as achieving
a high level of automation through the use of code generation.

The base principle of relational-object design is the concept of information
systems based on the model that starts from database. There was proposed a concept
based on the construction of high-performance database structure that describes
developed information system model. Providing developer with full access to the
database management (index building, writing complex SQL queries, using views,
etc.), we solve one major issues related to performance. Thus, the use of specialized
high-level declarative language SQL will optimize the process of retrieving the data
and the performance of the system in general, compared to the processing large data
amounts in the application.

Naturally on one hand system performance will depend on qualifications of the

22



developer who is in charge of design of the database structure and query writing
but on the other hand we have complete control over this process. In that view it
can be concluded that the development of high-performance applications without
knowledge of SQL cannot be done, and implementation of complex structures, such
as complicated SQL queries, or building the right indexes, can be hardly automated.

However, there is one process that can be automated; it is the process of writing
CRUD stored procedures. CRUD stored procedures generation process performs
each database object (table, view). This kind of stored procedures has a clear
structure that is why the process of their generation can be easily automated [14].

To set the correspondence between the relational and object data representation
we use the methodology of “three projections” [15]. This methodology describes the
mapping rules which help to transform the data from relational to object-oriented
model and vice versa. A clear allocation of relational objects and their properties
allows us to present them in the form of the object.

Thus the code generation process of the data access layer is fully automated.
The developer receives a full set of API to access and manipulate the data stored
under the control of RDBMS.

Code generation system C-Gen

In this section we describe the C-Gen – our code generation system that can
be used as a solution of the object-relational paradigm mismatch.

The C-Gen system generates a persistence layer of the application using a
database structure as an input. The database describes the entities in a subject
domain and therefore can be used to create business objects. Currently the system
is unidirectional: we can generate business objects from the database structure but
not vice versa.

The C-Gen uses a code generation approach, i.e. the automatic generation
of source code from the given input data. As a code generation tool we use a
Text Template Transformation Toolkit (T4 [16]). Templates are used to generate a
program source code based on the model (database structure). The generated file
can use an arbitrary text format, in particular, it can be a program source code in
any language.

Code generation process

The generation process starts from existing database that is designed man-
ually. A domain model is represented as a set of tables and views with relations.
The database developer takes all responsibility for creating database. This approach
supports maximum performance and flexibility of the created application. The de-
veloper has a full control over the process of designing and creating the database.
As a result the developer can create a high-quality and efficient SQL code.

When the domain model is implemented in the database, we use the C-Gen
system to generate a persistence layer. It consists of stored procedures inside the

23



database, as well as business objects and access methods in a source code. The
C-Gen supports two types of stored procedures:

∙ simple stored procedures support CRUD (create, retrieve, update, delete)
operations and are generated automatically;

∙ custom stored procedures are specific to a definite situation, and their design
is fully controlled by the developer.

Thus, by generating simple stored procedures automatically the developer is re-
lieved from writing them by hand. On the other hand we reserve the possibility of
implementing performance-critical stored procedures for the developer.

The next step after generating stored procedures is creating business objects.
For each entity in the database the C-Gen system generates a corresponding class.
Each database field is represented as a strongly typed property. For each custom
stored procedure the C-Gen system also generates a corresponding class based on
the procedure name and return fields. The final step is the generation of access
methods for simple and custom stored procedures; their parameters and return type
depend on stored procedure signature.

All generation steps are performed using T4 run-time templates that allow
creating a program source code and SQL queries. An example of template for
creating simple stored procedure (insert) is shown on Figure 1.

Figure 1. A piece of T4 template for Insert stored procedure.

As can be seen from the code fragment, the template consists of literal frag-

24



ments that are included into resulting file without processing, and control logic
fragments, marked by special symbols such as < #. During code generation, the
control logic fragments are executed and their results are included into generated
text file. Control logic has access to model metadata, represented as typed vari-
ables. Notice that templates can use all control structures of C# language, such as
branching and loops. Therefore code generation can include quite complex custom
logic.

As an example of generation process consider a simple database with single
table User containing information about users of some system. As a first step of
C-Gen generation process, 6 simple stored procedures are generated (Figure 2).

Figure 2. Simple stored procedures.

On the next step C-Gen generates User class with properties corresponding
to the fields of the User table in the database. On the final step, 6 methods are
generated, one for each simple stored procedure.

After the C-Gen system completed its work, the application developer can
work with business classes as required in application. Working with database is
completely hidden behind generated methods. If some changes are made to the
database structure the persistence layer can be regenerated. Therefore, the C-Gen
combines the automation of ORM systems with flexibility and performance of hand-
coded persistent layer.

Performance evaluation

To evaluate advantages of our approach, we have compared the performance
of the persistence layer generated by the C-Gen system with a code generated by
NetTiers [17] and .Net Entity Framework 4.0. For an 18Mb sample database (rep-
resenting an Internet shop) we have generated all relevant code using these systems.
Then we measured the performance of Select and Insert operations for different
query loads. Measurements were performed on a server with Core i5-2500k 3.3 GHz
CPU and 8Gb RAM, running Windows 7 x64 SP1 and Microsoft SQL Server 2008
R2 x64 Express. The results of performance measurements are shown on Figure 3.

As it can be seen from measurement results the C-Gen system generates more
efficient code: for Select operations it is about 3 times faster compared to NetTiers
and about 5 times compared to Entity Framework; for Insert operations – 1.66 times
faster compared to NetTiers and about 3.4 times compared to Entity Framework.

25



Figure 3. Performance comparison of C-Gen and NetTiers systems.

Conclusions

This paper determines the relevance of systems usage that provides integration
between relational and object data representation. There was concluded one of
the most common approaches of such interaction implementation: the use of ORM
systems. Also there were analyzed the advantages and drawbacks of the ORM-like
systems; relational-object mapping techniques were proposed as well.

In this paper we have described our approach to creating a persistence layer to
connect object-oriented and relational data. This approach is based on two concepts:
best performance and high degree of automation. The relational-object mapping
technique is based on principles of building the informational systems based on the
database model. This allows solving two main problems:

∙ performance. The queries written by SQL developer are much more effective
than the code that was generated by ORM system.

∙ automation. Code generation process based on the methodology of “three
projections” allows establishing a correspondence between the object and
relational representation of the data and provides API for accessing the
data.

To this end we use a text template system to generate SQL queries, business classes
and data access methods. We have implemented the C-Gen code generation system
that creates easy to use and efficient persistence layer based on the database struc-
ture. Code generation mechanisms based on T4 text templates allow generating the
source code in any programming language. Performance evaluation demonstrates
high efficiency of the code generated by the C-Gen system compared to the similar
systems. Detailed information and performance test of this system are described in
the articles [14, 15, 18].

One of the areas of use of this technique may be the sphere of support and
modernization of inherited (legacy) systems. For example, it is difficult to find a

26



corporation with more than 25 years of age which would not use information sub-
systems based on earlier hardware and software platforms from IBM. Such database
subsystems contain huge amounts of valuable information and the corporations have
to support it.

On the other hand, this approach can be used in the systems for which run-
time is the critical option, or there is a limit of hardware resources that can be used
by the system. For example, a non-optimal SQL queries or additional processing
of data in an application can lead to increased consumption of system resources
required to maintain the information system. For small systems, this fact may
seem insignificant, but when it comes to industrial scale, and the principle of cloud
hosting is built on the billing of CPU time and RAM consumed by the application,
the savings can be substantial.

References

[1] W. Keller, “Object/relational access layers – a roadmap, missing links and
more patterns,” in Proceedings of the “3-rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP)”, 1998.

[2] V. P. Ivannikov, S. S. Gaisaryan, K. V. Antipin, and V. V. Roubanov, “Object-
oriented environment that provides access to relational databases,” in Proceed-
ings of the “Institute for System Programming of Russian Academy of Sciences”,
pp. 89–114, 2001.

[3] C. Russell, Bridging the Object-Relational Divide, vol. 6, ch. Object-Relational
Mapping, pp. 18–28. Sun Microsystems, 2008.

[4] “Overview of object-relational mapping (orm) for the .net.” http://arbinada.

com/main/node/33.
[5] J. Eggers, “Implementing express in sql. document iso tc184/sc4/wg1/n292.”

http://www.iso.org/iso/home.htm.
[6] M. Mead and D. Thomas, “Proposed mapping from express to sql. technical

report,” tech. rep., Rutherford Appleton Laboratory, 1989.
[7] K. C. Morris, “Translating express to sql: A user’s guide. technical report nistir

4341,” tech. rep., National Institute of Standards and Technology, Gaithersburg,
Maryland, 1990.

[8] D. Sanderson and D. Spooner, “Mapping between express and traditional dbms
models,” in Proceedings of the “EUG’93 - The Third EXPRESS Users Group
Conference”, 1993.

[9] L. Klein, A. Stonis, and D. Jancauskas, “Express/sql white paper. document
iso tc184/sc4/wg11/n144.” http://www.iso.org/iso/home.htm.

[10] “Orm or object-relational projector.” http://habrahabr.ru/company/piter/

blog/165327/.
[11] “Hql examples.” http://docs.jboss.org/hibernate/orm/3.3/reference/

en/html/queryhql.html#queryhql-examples.
[12] “Linq to sql [linq to sql].” http://msdn.microsoft.com/ru-ru/library/

bb386976.aspx.

27



[13] “Navigational approach to data manipulation and personal databases.” http:

//www.mstu.edu.ru/study/materials/zelenkov/ch_4_8.html.
[14] I. O. Lihatskiy, “Code generation tools for interacting with the database through

the objects,” Problems of programming, no. 2-3, pp. 384–385, 2012.
[15] I. O. Lihatskiy, “About one method of forming an object view of relational

data,” Problems of programming, no. 3, pp. 81–82, 2013.
[16] “Code generation and t4 text templatess.” http://msdn.microsoft.com/

en-Us/library/bb126445.aspx.
[17] “.nettiers application framework.” http://nettiers.com.
[18] I. Lihatsky, A. Doroshenko, and K. Zhereb, Information Systems: Methods,

Models, and Applications, vol. 137, ch. A Template-Based Method to Cre-
ate Efficient and Customizable Object-Relational Transformation Components,
pp. 178–184. Springer, 2013.

Authors

Igor Oleksandrovych Likhatskyi — the Junior Researcher, Institute of
Software Systems of National Academy of Sciences of Ukraine, Kyiv, Ukraine;
E-mail: igor md@ukr.net

28


