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The paper summarizes the authors’ recent work on developing and proving an
exponentially convergent numerical-analytical method (the FD-method) for solving
Sturm-Liouville problems with a singular Legendre operator and a singular poten-
tial. It gives a concise general overview of the FD-method, outlines the proof of its
convergence and exponential convergence rate when applied to the particular problem
at hand and talks briefly about its software implementation.

Introduction

What follows presents a summary of the article [1]. In the article the authors
generalize the results found in [2] and [3], which concern the subject of solving the
Sturm-Liouville problem

− 𝑑

𝑑𝑥

[︂
(1 − 𝑥2)

𝑑𝑢(𝑥)

𝑑𝑥

]︂
+ 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥), 𝑥 ∈ (−1, 1), (1)

lim
𝑥→±1

(1 − 𝑥2)
𝑑𝑢(𝑥)

𝑑𝑥
= 0. (2)

Such problems arise in applications like solving partial differential equations in
spherical coordinates using separation of variables, as is done, e.g., with hydrogen-
molecule ion’s equation in [4] (see [4, p. 167–170]).

The authors’ article [1] extends the FD-method for solving problem (1), (2)
previously developed in [2], [3] to the case when the potential function 𝑞(𝑥) is such
that

‖𝑞‖1,𝜌 =

1∫︁
−1

|𝑞(𝑥)|√
1 − 𝑥2

𝑑𝑥 < ∞. (3)

The preceding articles consider a more limited case of piecewise continuous
functions that are bounded on the closed interval [−1, 1] and have no more than a
finite number of jump discontinuities.

This extension was prompted by the numerical convergence of the FD-method
when applied to problem (1), (2) with the potential 𝑞(𝑥) = |𝑥+1/3|1/2+ln(|𝑥−1/3|),
which does not belong to the class 𝑄0[−1, 1], shown in [3].

Under the new conditions on 𝑞(𝑥) the problem is enough of a generalization
of those considered in [2] and [3] that the proof techniques used therein couldn’t be
applied. Instead, to obtain the sufficient conditions for convergence a new approach
was used based on an inequality for Legendre functions proposed by V. L. Makarov.
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The inequality (see Theorem 2) follows from Theorem 1, analogues of which the
authors were unable to find. These theorems are the novel and original results in
the article.

Overview of the FD-method

Below a solving algorithm for problem (1), (2) is constructed based on the
general idea of the FD-method (see [5]).

The authors have proved that the eigenvalues of problem (1), (2) form an
increasing sequence 𝜆0 < 𝜆1 < . . . < 𝜆𝑛 < . . .

We are going to look for the eigensolution 𝑢𝑛(𝑥), 𝜆𝑛 to eigenvalue problem (1),
(2) in the form of a series

𝑢𝑛(𝑥) =

∞∑︁
𝑗=0

𝑢(𝑗)
𝑛 (𝑥), 𝜆𝑛 =

∞∑︁
𝑗=0

𝜆(𝑗)
𝑛 , (4)

where the pair 𝑢
(𝑗)
𝑛 (𝑥), 𝜆

(𝑗)
𝑛 can be found as the solution to the following system of

recurrence problems:

𝑑

𝑑𝑥

[︃
(1 − 𝑥2)

𝑑𝑢
(𝑗)
𝑛 (𝑥)

𝑑𝑥

]︃
+ 𝜆(0)

𝑛 𝑢(𝑗)
𝑛 (𝑥) = 𝐹 (𝑗)

𝑛 (𝑥), (5)

𝐹 (𝑗)
𝑛 (𝑥) = −

𝑗−1∑︁
𝑖=0

𝜆(𝑗−𝑖)
𝑛 𝑢(𝑖)

𝑛 (𝑥) + 𝑞(𝑥)𝑢(𝑗−1)
𝑛 (𝑥), 𝑗 = 1, 2, . . . (6)

lim
𝑥→±1

(1 − 𝑥2)
𝑑𝑢

(𝑗)
𝑛 (𝑥)

𝑑𝑥
= 0, 𝑗 = 0, 1, 2, . . . . (7)

Although problem (5), (6), (7) does not possess a unique solution, the most con-
venient one (from the computational standpoint) can be found recursively through
applying the following formulas:

𝑢(0)
𝑛 (𝑥) =

√︂
2𝑛 + 1

2
𝑃𝑛(𝑥), 𝜆(0)

𝑛 = 𝑛(𝑛 + 1), 𝑛 = 0, 1, 2, . . . . (8)

𝑢(𝑗)
𝑛 (𝑥) = 𝑐(𝑗)𝑛 𝑢(0)

𝑛 (𝑥) +

𝑥∫︁
−1

𝐾𝑛(𝑥, 𝜉)𝐹 (𝑗)
𝑛 (𝜉)𝑑𝜉, (9)

𝑐𝑗𝑛 = −
1∫︁

−1

𝑢(0)
𝑛 (𝑥)

𝑥∫︁
−1

𝐾𝑛(𝑥, 𝜉)𝐹 (𝑗)
𝑛 (𝜉)𝑑𝜉𝑑𝑥, (10)

𝜆(𝑗)
𝑛 =

1∫︁
−1

𝑞(𝑥)𝑢(0)
𝑛 (𝑥)𝑢(𝑗−1)

𝑛 (𝑥)𝑑𝑥, 𝑗 ∈ N, (11)
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where 𝐾𝑛(𝑥, 𝜉) = 𝑃𝑛(𝑥)𝑄𝑛(𝜉) − 𝑄𝑛(𝑥)𝑃𝑛(𝜉) and 𝑃𝑛(𝑥), 𝑄𝑛(𝑥) denote Legendre
functions of the first and the second kind respectively.

Justification outline

The following statements are proven in [1].
We establish the result stated in Theorem 1, which is then used to prove the

convergence of the FD-method.

Theorem 1 Suppose that 𝑢𝐼(𝜃) and 𝑢𝐼𝐼(𝜃) are a pair of solutions to the differential
equation

𝑑2𝑢(𝜃)

𝑑𝜃2
+ 𝜑(𝜃)𝑢(𝜃) = 0, 𝜃 ∈ (𝑎, 𝑏) , (12)

𝜑(𝜃) ∈ 𝐶1(𝑎, 𝑏), 𝜑(𝜃) > 0,∀𝜃 ∈ (𝑎, 𝑏)

that satisfy the following condition:

𝑊 (𝜃) = 𝑢𝐼(𝜃)𝑢′
𝐼𝐼(𝜃) − 𝑢′

𝐼(𝜃)𝑢𝐼𝐼(𝜃) = 1, ∀𝜃 ∈ (𝑎, 𝑏). (13)

If there exists a point 𝑐 ∈ (𝑎, 𝑏) such that 𝜑′(𝜃) ≤ 0 ∀𝜃 ∈ (𝑎, 𝑐] and 𝜑′(𝜃) ≥ 0
∀𝜃 ∈ [𝑐, 𝑏) then ⃒⃒⃒

𝑣(𝜃, 𝜃)
⃒⃒⃒
≤

√︀
2𝜑−1(𝑐),∀𝜃, 𝜃 ∈ (𝑎, 𝑏), (14)

𝑣(𝜃, 𝜃)
𝑑𝑒𝑓
= 𝑢𝐼(𝜃)𝑢𝐼𝐼(𝜃) − 𝑢𝐼(𝜃)𝑢𝐼𝐼(𝜃).

If 𝜑′(𝜃) ≤ 0 or 𝜑′(𝜃) ≥ 0 ∀𝜃 ∈ (𝑎, 𝑏) then⃒⃒⃒
𝑣(𝜃, 𝜃)

⃒⃒⃒
≤ max

{︂√︀
𝜑−1(𝜃),

√︁
𝜑−1(𝜃)

}︂
,∀𝜃, 𝜃 ∈ (𝑎, 𝑏). (15)

The function 𝜑(𝜃) = (2 sin(𝜃))−2 + (𝜈 + 1/2)2 fulfils all the requirements of
Theorem 1 with 𝑐 = 𝜋/2. Therefore, Theorem 1 provides us with the estimation√︁

sin(𝜃)sin(𝜃) ·
⃒⃒⃒
𝑃𝜈(cos(𝜃))𝑄𝜈(cos(𝜃) − 𝑃𝜈(cos(𝜃))𝑄𝜈(cos(𝜃)

⃒⃒⃒
≤

√︀
2𝜑−1(𝜋/2) ≤

≤
√︃

2
1
4 +

(︀
𝜈 + 1

2

)︀2 ,
∀𝜃, 𝜃 ∈ (0, 𝜋) and the following corollary:

Theorem 2 For every 𝜈 ∈ R it holds true that

4
√︀

(1 − 𝑥2)(1 − 𝜉2) |𝑃𝜈(𝑥)𝑄𝜈(𝜉) − 𝑃𝜈(𝜉)𝑄𝜈(𝑥)| ≤
√︃

2
1
4 +

(︀
𝜈 + 1

2

)︀2 . (16)
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Theorem 3 Let 𝑛0 =
[︁

3
√
2𝜋

3−2
√
2
‖𝑞‖1,𝜌

]︁
1 + 1 and �̃�𝑛 = 3

√
2𝜋
𝑛 ‖𝑞‖1,𝜌. The FD-method

described by formulas (4), (8), (9), (10) and (11) converges to the eigensolution
(𝑢𝑛(𝑥);𝜆𝑛) of problem (1), (2) for all 𝑛 > 𝑛0. Furthermore, for the 𝑛 > 𝑛0 the
following estimations of the method’s convergence rate hold true:⃦⃦⃦

𝑢𝑛(𝑥)− 𝑚
𝑢𝑛(𝑥)

⃦⃦⃦
∞,1/

√
𝜌
≤ �̃�𝑚+1

𝑛

(2𝑚 + 3)
√︀
𝜋(𝑚 + 2)(1 − �̃�𝑛)

, (17)

⃒⃒⃒
𝜆𝑛−

𝑚

𝜆𝑛

⃒⃒⃒
≤ ‖𝑞‖1,𝜌

�̃�𝑚
𝑛

(2𝑚 + 1)
√︀
𝜋(𝑚 + 1)(1 − �̃�𝑛)

, (18)

where
𝑚
𝑢𝑛(𝑥) =

𝑚∑︀
𝑗=0

𝑢
(𝑗)
𝑛 (𝑥),

𝑚

𝜆𝑛=
𝑚∑︀
𝑗=0

𝜆
(𝑗)
𝑛 .

Software implementation

The software implementation was written in Python 2.7 using the libraries
NumPy, SciPy, mpmath and matplotlib. The use of the NumPy library has allowed
us to have floating-point variables with up to quadruple precision2. We faced a
technical problem when trying to compute the values of Legendre 𝑄𝑛 function for
an argument that’s sufficiently close to ±1 using SciPy’s lqmn to circumvent which
we had to resort to calling the corresponding function legenq of the mpmath li-
brary. This process involved converting the argument of legenq from the data type
numpy.longdouble to mpf and back again with sufficient precision.

In the description of the algorithm we use the tanh rule and Stenger’s formula
in order to approximate integration in formulas (9), (10), (11):

𝑏∫︁
𝑎

𝑓(𝑥)𝑑𝑥 =

+∞∫︁
−∞

𝑓

(︂
𝑎 + 𝑏𝑒𝑡

1 + 𝑒𝑡

)︂
(𝑏− 𝑎)𝑑𝑡

(𝑒−𝑡/2 + 𝑒𝑡/2)2
≈

≈ ℎ𝑠𝑖𝑛𝑐

𝐾∑︁
𝑖=−𝐾

𝑓

(︂
𝑎 + 𝑏𝑒𝑖ℎ𝑠𝑖𝑛𝑐

1 + 𝑒𝑖ℎ𝑠𝑖𝑛𝑐

)︂
𝑏− 𝑎

(𝑒−𝑖ℎ𝑠𝑖𝑛𝑐/2 + 𝑒𝑖ℎ𝑠𝑖𝑛𝑐/2)2
,

𝑧𝑗∫︁
𝑎

𝑓(𝑥)𝑑𝑥 ≈ ℎ𝑠𝑖𝑛𝑐

𝐾∑︁
𝑖=−𝐾

𝛿
(−1)
𝑗−𝑖 𝑓

(︂
𝑎 + 𝑏𝑒𝑖ℎ𝑠𝑖𝑛𝑐

1 + 𝑒𝑖ℎ𝑠𝑖𝑛𝑐

)︂
𝑏− 𝑎

(𝑒−𝑖ℎ𝑠𝑖𝑛𝑐/2 + 𝑒𝑖ℎ𝑠𝑖𝑛𝑐/2)2

where 𝛿
(−1)
𝑖 = 1

2 +
𝑖∫︀
0

sin(𝜋𝑡)
𝜋𝑡 𝑑𝑡, 𝑖 = −2𝐾 . . . 2𝐾, ℎ𝑠𝑖𝑛𝑐 =

√︁
2𝜋
𝐾 .

1Here [·] denotes the integer part of a real number.
2If the code called upon by SciPy and NumPy is compiled for the x86 64 architecture. For

reasons to do the GCC compiler the same numpy.longdouble type we use results in 80-bit precision
on 32-bit processors.
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Algorithm 1: Main program

Data: 𝑛 — the number of the eigenvalue we want to find, 𝑚 — the order of

the FD-method (the number of steps taken), 𝐾, ℎ𝑠𝑖𝑛𝑐, 𝑧𝑖, 𝜇𝑖, 𝛿
(−1)
𝑖

Result:
𝑚

𝜆𝑛,
𝑚
𝜂𝑛,

𝑚
𝑢𝑛(𝑥), 𝑑

𝑚
𝑢𝑛

𝑑𝑥 (𝑥),
{︁⃦⃦⃦

𝑢
(𝑖)
𝑛 (𝑥)

⃦⃦⃦}︁𝑚

𝑖=0

begin
// We initialize 𝐿 as a one-dimensional array of 2𝐾 + 1

zeros and 𝐹,𝑈 and 𝐷𝑈 as two-dimensional arrays of

2𝐾 + 1 by 2𝐾 + 1 zeros.

𝐿 := 𝑧𝑒𝑟𝑜𝑠(−𝐾 . . .𝐾);
𝐹,𝑈,𝐷𝑈 := 𝑧𝑒𝑟𝑜𝑠(−𝐾 . . .𝐾,−𝐾 . . .𝐾);
𝐿[0] = 𝑛(𝑛 + 1);
for 𝑖 := −𝐾 . . .𝐾 do

𝑈 [0][𝑖] = 𝑃𝑛(𝑥);
𝐷𝑈 [0][𝑖] = 𝑑𝑃𝑛(𝑥);

end
for 𝑑 := 1, 2 . . .𝑚 do

// Compute the correction for the eigenvalue

𝐿[𝑑] := 𝐴−2IntAB(𝑈 [0], 𝑈 [𝑑− 1], 𝑞);
// Compute F

for 𝑖 := −𝐾 . . .𝐾 do
𝐹 [𝑑][𝑖] := 𝑈 [𝑑− 1][𝑖] 𝑞(𝑧𝑖);
for 𝑗 := 0 . . . 𝑑− 1 do

𝐹 [𝑑][𝑖] := 𝐹 [𝑑][𝑖] − 𝐿[𝑑− 𝑗]𝑈 [𝑗][𝑖];
end

end
// Compute the correction for the eigenfunction

for 𝑖 := −𝐾 . . .𝐾 do
𝑈 [𝑑][𝑖] := 𝑄𝑛(𝑧𝑖)IntAZ(𝑖;𝐹 [𝑑], 𝑃𝑛) − 𝑃𝑛(𝑧𝑖)IntAZ(𝑖;𝐹 [𝑑], 𝑄𝑛);
𝐷𝑈 [𝑑][𝑖] :=
𝑑𝑄𝑛(𝑧𝑖)IntAZ(𝑖;𝐹 [𝑑], 𝑃𝑛) − 𝑑𝑃𝑛(𝑧𝑖)IntAZ(𝑖;𝐹 [𝑑], 𝑄𝑛);

end
// Orthogonality

𝐼 = 𝐴−2IntAB(𝑈 [𝑑], 𝑈 [0]);
for 𝑖 := −𝐾 . . .𝐾 do

𝑈 [𝑑][𝑖] := 𝑈 [𝑑][𝑖] − 𝐼 𝑈 [0][𝑖];
𝐷𝑈 [𝑑][𝑖] := 𝐷𝑈 [𝑑][𝑖] − 𝐼 𝐷𝑈 [0][𝑖];

end
// Compute the residual

CompRes;

end
𝑚

𝜆𝑛 :=
∑︀𝑚

𝑖=0 𝐿[𝑖];
end
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We use the following auxiliary notation:

𝑧𝑖 =
𝑎 + 𝑏𝑒ℎ𝑠𝑖𝑛𝑐𝑖

1 + 𝑒ℎ𝑠𝑖𝑛𝑐𝑖
, 𝜇𝑖 =

𝑏− 𝑎

(𝑒−𝑖ℎ𝑠𝑖𝑛𝑐/2 + 𝑒𝑖ℎ𝑠𝑖𝑛𝑐/2)2

and
𝐴−1 = 𝐴−1(𝑛) =

√︀
2/(2𝑛 + 1).

In order to measure how close an obtained approximation is to the exact solu-
tion we use the residual functional

𝑚
𝜂𝑛 =

⎡⎢⎣ 1∫︁
−1

⎡⎣(1 − 𝑥2)
𝑑
𝑚
𝑢𝑛(𝑥)

𝑑𝑥
+

𝑥∫︁
−1

(︂
𝑚

𝜆𝑛 − 𝑞(𝜉)

)︂
𝑚
𝑢𝑛(𝜉)𝑑𝜉

⎤⎦2

𝑑𝑥

⎤⎥⎦
1
2

.

For the sake of simplicity the details related to the subdivision of the interval
(𝑎, 𝑏) into subintervals are omitted.

The values of 𝛿
(−1)
𝑖 are precomputed. By “𝐹 [𝑖]” we mean the values

𝐹 [𝑖][−𝐾], 𝐹 [𝑖][−𝐾 + 1], . . . , 𝐹 [𝑖][𝐾] taken as a one-dimensional array. The function
IntAB(𝑓1, . . . , 𝑓𝑛) calculates the definite integral of the product of its arguments
over (𝑎, 𝑏); IntAZ(𝑖; 𝑓1, . . . , 𝑓𝑛) does the same over (𝑎, 𝑧𝑖).

Conclusions

The article [1] lays out the structure of and provides a theoretical justification
for the FD-method as applied to solving the Sturm-Liouville problem (1), (2). In
Theorem 3 convergence is proven for the case when 𝑞(𝑥) satisfies condition (3) and
estimates for the convergence rate are given explicitly.

The algorithm is implemented in software as a library (a Python module).
The implementation can be integrated into larger systems or used as is in applied
sciences. It doesn’t require the user to understand much of its internal workings.
The source code for the library along with example Python code that uses it can be
obtained from GitHub at https://github.com/imathsoft/legendrefdnum.
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