
TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

Nonnegative Tensor Factorization Usage to Find
Semantic Distance Between Natural Language Texts

V.V. Smielov

The problem of finding the semantic distance between natural language texts is
very important nowadays. As amount of words is huge and time performance is very
important so the necessity of fast algorithm for preprocessing is very big. 3 demission
array allows to transform natural language texts to mathematical object to work with.
Nonnegative Tensor Factorization allows decrease size of matrix without loosing in
speed performance.

Keywords: NTF, NLP, semantic distance.
ACM 2012: Computing methodologies → Artificial intelligence → Natural

language processing → Lexical semantics.
MSC 2010: 15A23
UDC: 681.3

Introduction

Quite popular approach to construct algorithms for analyzing and processing
natural language texts is to use vector and matrix models for linguistic data rep-
resentation. Since texts can have huge size and words variety, the corresponding
matrix representation of texts often reach extra large sizes. There is a need for eco-
nomical and convenient representation of the received data sets. In the article the
3 dimensional array is proposed to act as main mathematical model, same as Non-
negative Tensor Factorization [1] as a suitable way to decrease size and an effective
way of data transforming, and the mathematical model proposed and its software
implementation.

Semantic Distance

Since the growth of information in text form is immense, more urgent problem
arises automatic analysis of natural language texts. Today, there are many algo-
rithms that allow for a primary word processing as defining the language of written
text, define words that occur most often referring to a category of text according to
given parameters. However, in analyzing texts in natural language is still a lot of
unresolved issues. For some, there are algorithms that work on a particular set of in-
puts. Others have severe limitations on the amount of input. One of these problems
is to determine the semantic distance between the set texts: the input program will
receive two (or more) texts written in the same language; the exit program returns a
factor indicating how objects, events or events described in texts semantically close
to each other.

Semantic distance is a value that shows how the two concepts are connected
(or similar) to each other. The calculation of semantic similarity is very widely used
in computer linguistics, for example, semantic analysis, and anaphora resolution of

272

http://taac.org.ua/en/


TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

polysemy, clustering and classification of texts, identification of entities in text and
so on. To determine the semantic proximity between texts requires an analysis of
both texts, and on the basis of the analysis indicate the degree of closeness [2]. For
the analysis of the text you want to switch from natural language to formal models.
Such a model can be multi-dimensional matrix. A simpler approach is to use a two-
dimensional term-document matrix. In such case main idea is to find “keywords” and
frequency of their appearance in both texts [3], but this method does not allow make
any difference between different senses of same word. So to establish more subtle and
precise connections can use a three-dimensional matrix of subject – predicate – the
application. But as the size of the matrix is very large scale, it raises the question
of whether the methods tensor factorization integral oversized model transformation
data presentation.

Mathematical Model of Block Nonnegative Tensor Factorization

The problem can be rewritten in such way:
Let 𝐺 ∈ R𝑅×𝑆×𝑇 be a third order nonnegative tensor to be analyzed. Nonneg-

ative Tensor Factorization [4] of 𝐺 requires solving a nonlinear minimization problem

𝑚𝑖𝑛�̂�≥0‖ 𝐺− �̂� ‖
2

𝐹 ,

where �̂� is the tensor of reconstructed data and ‖ 𝐴 ‖2𝐹 is the square Frobenius norm.
The rank-𝐾 reconstruction is defined by sums of tensor products:

�̂� =

𝐾∑︁
𝑘=1

𝑢(𝑘) ⊗ 𝑣(𝑘) ⊗ 𝑤(𝑘),

where 𝑢(𝑘) ∈ 𝑅𝑅, 𝑣(𝑘) ∈ 𝑅𝑆 and 𝑤 ∈ 𝑅𝑇 are basis vectors of nonnegative values.
This reconstruction process is illustrated in Figure 1. The most commonly used

Figure 1. Principle of third order tensor factorization by using sums of rank-1 tensors

approaches to nonnegative tensor factorization are based on the Block Gauss-Seidel
(BGS) method [5]. Using a combination of Gauss-Seidel and Jacobi iterative update
schemes, these are calculated using iterative rules to update 𝑢(𝑘), 𝑣(𝑘) and 𝑤(𝑘):

273

http://taac.org.ua/en/


TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

𝑢
(𝑘)
𝑖 ←

𝑢𝑘
𝑖

∑︀
𝑠,𝑡 𝐺𝑖,𝑠,𝑡𝑣

(𝑘)
𝑠 𝑤

(𝑘)
𝑡∑︀𝐾

𝑚=1
𝑢
(𝑘)
𝑖 ⟨𝑣(𝑚), 𝑣(𝑘)⟩, ⟨𝑤(𝑚), 𝑤(𝑘)⟩

𝑣
(𝑘)
𝑖 ←

𝑣𝑘𝑖
∑︀

𝑠,𝑡 𝐺𝑟,𝑖,𝑡𝑢
(𝑘)
𝑠 𝑤

(𝑘)
𝑡∑︀𝐾

𝑚=1
𝑣
(𝑘)
𝑖 ⟨𝑢(𝑚), 𝑢(𝑘)⟩, ⟨𝑤(𝑚), 𝑤(𝑘)⟩

𝑤
(𝑘)
𝑖 ←

𝑤𝑘
𝑖

∑︀
𝑠,𝑡 𝐺𝑟,𝑠,𝑖𝑢

(𝑘)
𝑠 𝑣

(𝑘)
𝑡∑︀𝐾

𝑚=1
𝑤

(𝑘)
𝑖 ⟨𝑢(𝑚), 𝑢(𝑘)⟩, ⟨𝑣(𝑚), 𝑣(𝑘)⟩

where 𝐺 is the data set and ⟨𝑥; 𝑦⟩ denotes inner product. Usually, this iterative
procedure must be repeated hundreds or even hundreds of thousands times to con-
verge to the correct solution depending on the complexity of the data set. Therefore,
iterative NTF computation is quite time consuming, and approaches to speeding it
up would be useful.

An Algorithm for Block Nonnegative Tensor Factorization

Algorithm closely follows the theoretical description from previous section. The
first step of the algorithm initializes the vectors 𝑢; 𝑣 and 𝑤 by using random val-
ues between 0 and 1. The NTF problem can be divided into such 3 subproblems,
corresponding to written rules. Functions for their computation are named S̈TEP̈.
The inner products in the equationś denominators can be calculated in advance and
stored in 𝐾 ×𝐾 sized matrices. In Algorithm, these matrices are named 𝑀𝑢, 𝑀𝑣,
and 𝑀𝑤, where 𝑀𝑢 = 𝑢𝑇𝑢, i.e.,

𝑀𝑢 =

⎡⎢⎢⎢⎣
⟨𝑢(1), 𝑢(1)⟩ ⟨𝑢(1), 𝑢(2)⟩ · · · ⟨𝑢(1), 𝑢(𝐾)⟩
⟨𝑢(2), 𝑢(1)⟩ ⟨𝑢(2), 𝑢(2)⟩ · · · ⟨𝑢(2), 𝑢(𝐾)⟩

...
...

. . .
...

⟨𝑢(𝐾), 𝑢(1)⟩ ⟨𝑢(𝐾), 𝑢(2)⟩ · · · ⟨𝑢(𝐾), 𝑢(𝐾)⟩

⎤⎥⎥⎥⎦
and 𝑀𝑣 and 𝑀𝑤 are defined similarly. The function for their computation is named
CMAT in Algorithm. These matrices are symmetrical, so only the upper or lower
triangle matrix needs to be calculated and stored.

Algorithm. Structure of the NTF

Require: 𝐺,𝐾, 𝐼
1: init 𝑢, 𝑣, 𝑤
2: 𝑀𝑢 ← CMAT(u)
3: 𝑀𝑣 ← CMAT(v)
4: 𝑀𝑤 ← CMAT(w)
5: for all 𝑖 ∈ [0 . . . 𝐼 − 1] do
6: 𝑢← STEP (𝐺,𝑈, 𝑣, 𝑤,𝑀𝑣,𝑀𝑤)
7: 𝑀𝑢 ← CMAT(u)
8: 𝑣 ← STEP (𝐺,𝑈, 𝑣, 𝑤,𝑀𝑢,𝑀𝑤)

274

http://taac.org.ua/en/


TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

9: 𝑀𝑣 ← CMAT(v)
10: 𝑤 ← STEP(𝐺,𝑈, 𝑣, 𝑤,𝑀𝑢,𝑀𝑤)
11: 𝑀𝑤 ← CMAT(w)
12: return 𝑢, 𝑣, 𝑤

Calculating the numerator in the subproblem steps is the most time consuming
operation. All other calculations, including creating the correlation matrices such as,
do not take a significant amount of time in comparison. The numerator calculation
consists mostly of repeated summing of a large array, so it is more demanding of
memory bandwidth than it is computationally intensive. The subproblem steps only
differ in the direction in which the layers of 𝐺 are taken.

Integration of the Algorithm and Testing

As was said before, the main problem is to find the semantic distance between
two texts. Therefor, we use stemming algorithm to process text and get stemmed
words. (Stemming is the term used in linguistic morphology and information retrieval
to describe the process for reducing inflected (or sometimes derived) words to their
word stem, base or root form – generally a written word form. The stem need not be
identical to the morphological root of the word; it is usually sufficient that related
words map to the same stem, even if this stem is not in itself a valid root). After
stemming we break text into sentences and find out diathesis [6] of each sentence. It
can be whether active or passive voice. For active voice we take into consideration
words that represent subject and action, for passive voice we take into consideration
words that represent object and action.

Now we can build a matrix 𝐺𝑢,𝑣,𝑤 that will represent input data as the amount
of times words 𝑣 and 𝑤 were appearing in same sentence in text 𝑢. Such model will
allow easily respond to requests of type “find distance between text 𝑖 and text 𝑗”.
But as amount of words can be huge we need decrease size of built matrix. That
is why NTF was used. Such approach allowed decrease size of matrix without big
difference in time to access an element of the matrix.

Finally, such approach allowed to consider as not semantically closed texts, that
has been containing quite similar words as main but in different senses.

To provide tests on real data and prove points, set of pair of texts were selected.
Experts (humans) defined for each pair whether texts are semantically close or not.
Then on same pairs 2 different algorithms were applied. First method defined se-
mantic distance according to distance between main words of texts. Second method
defined semantic distance with usage 3 dimensional matrix to represent texts and
approach described before. For both algorithm same border to define similarity was
used (if semantic distance is less than defined border then we were assuming that
texts are semantically closed and texts are not semantically closed otherwise). So
there are 4 possible scenarios: experts have decided that texts are not close and
program makes the same decision (True Negative), experts and program decided
that texts are close (True Positive), experts decided that texts are close but result of
program was positive (False Negative), and experts decided that texts are not seman-
tically closed but program result was opposite (False Positive). Result of experiment

275

http://taac.org.ua/en/


TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

is provided in Table 1.

Table 1. Compare results of 2 methods

Result main words 3 dimensional matrix
True Positive 89 88
True Negative 24 31
False Positive 17 9
False Negative 6 8

As we can see from results table amount of True Negative has increased and
amount of False Positive has decreased, so generally algorithm become better.

Conclusions

Semantic distance between texts can be found as a distance between main words
of the texts. In this article tree demission matrix (text-object-action) was proposed
as a main mathematical model to represent a text. As the variety of words can
be huge nonnegative tensor factorization was proposed to decrease size of matrix.
Explanation of the main idea, mathematical proof and program realization idea were
providing.

References

[1] A. Cichocki, R. Zdunek, A. Huy-Phan, and S. Amari, Nonnegative Matrix and
Tensor Factorizations Applications to Exploratory Multi-way Data Analysis and
Blind Source Separation. John Wiley and Sons, Ltd, 2009.

[2] S. Harispe, S. Ranwez, S. Janaqi, and S. Montmain, Semantic Measures for the
Comparison of Units of Language, Concepts or Entities from Text and Knowledge
Base Analysis. Arxiv Corr, 2013.

[3] J. Jiang, “Semantic similarity based on corpus statistics and lexical taxonomy,”
In the Proceedings of ROCLING X, 2007.

[4] J. Antikainen, J. Havel, R. Josth, A. Herout, P. Zemcek, and M. Hauta-Kasari,
Nonnegative Tensor Factorization Accelerated Using GPGPU. CezmSMT,, 2011.

[5] L. Grippo and M. Sciandrone, “On the convergence of the blocknonlinear gauss-
seidel method under convex constraints,” Operations Research Letters, vol. 26,
no. 3, pp. 127–136, 2003.

[6] W. O’Grady, J. Archibald, M. Aronoff, and J. Rees-Miller, Contemporary Lin-
guistics: An Introduction. Bedord St. Martins, 2003.

Author

Valerii Viktorovych Smielov — the 1st year postgraduate student, Cy-
bernetics Faculty, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
E-mail: smielov.knu@gmail.com

276

http://taac.org.ua/en/

	 Nonnegative Tensor Factorization Usage to Find Semantic Distance Between Natural Language Texts 
	Introduction
	Semantic Distance
	Mathematical Model of Block Nonnegative Tensor Factorization
	An Algorithm for Block Nonnegative Tensor Factorization
	Integration of the Algorithm and Testing
	Conclusions
	References
	Author


